Astroparticle Physics from Space

Roberto Battiston University and INFN of Perugia

Napoli 20 June 2002

PARTICLE PHYSICS BIRTH WAS DUE TO COSMIC RAYS

Advent of accelerators

Astro Particle Physics

High Energy Cosmic Rays in the Universe

PARTICLE ASTROPHYSICS

>400 Km

and the second second

Direct Study

40 Km

Atmosphere

Indirect Study Underground Detectors

EAS

Neutrinos

Primary Coemic

Particios

Deep underwater Detectors

>106 Km

300 Km

Part A Calibrating nature's beam (the real facts)

Existing and future measurement of the hadronic CR component Atmospheric neutrinos calculations

Part B Search for new particles (hopes & dreams)

Anti-matter search

Dark matter searches Anti-protons Anti-deuterons Electrons/positrons Gamma rays

Ultraheavy particle searches EEHCR Neutrinos

Part A

Calibrating Nature's Beam

Hadrons

•Main components of Cosmic Rays (CR)

•Precise measurement of their abundances and spectra reveal

Source composition
Acceleration mechanisms
Interaction with the ISM

 $\leftrightarrow \qquad \text{Propagation models}$

•Background for searches of exotic CR. In order to search for very rare events the CR background should be known very precisely

•Input for atmospheric neutrino calculations

High Energy Cosmic Rays composition

Particle composition

Elemental composition

Workshop 2002

10

Hillas-plot (candidate sites for E=100 EeV)

Where HE CR comes from?

Acceleration mechanism: particles bounces in magnetic field shock waves (Fermi....)

However at Extreme Energies this does not work

Size and magnetic field strength of possible acceleration sites. Objects below the diagonal lines cannot accelerate the corresponding elements (Iron with $\beta = 1$ or protons $\beta = 1$ and $\beta = 1/300$) above 10^{20} eV

Roberto Battiston CERN-ESA-ESO Workshop 2002

Balloons

- Magnetic Spectrometers $(\mathbf{R}, \beta, \mathbf{Z})$
- Charge Identifiers (\mathbf{Z}, β)
- Emulsion Chambers (E,Z)

.. for nearly 40 years sources of most data on CR

Space Borne

- Double Cerenkov (\mathbf{Z},β)
- Multiple $dE/dx \oplus Total \to (Z^2M)$
- Magnetic Spectrometers $(\mathbf{R}, \beta, \mathbf{Z})$

.....in the last years sources of most precise CR data

AMS at JSC before the installation on the Shuttle (1998)⁵

Sovery

BALLOONS SPACE-BORNE Geometrical Acceptance Flight Duration Measurement Redundancy Atmospheric Corrections Detector Accessibility Flight Control Price

 \Rightarrow New Experiments:

Acceptance & Duration

... in the future only space borne or long duration balloons

Geographical coverage much better for satellites

Sun Magnetosphere effects

At low energy (below cutoff, up to R \sim 15 GeV) latitude dependence and solar modulation influence the spectra

At high energy (above R~ 20 GeV) the measurement of the primary flux should give the same result in experiments performed at similar solar activities (LEAP, IMAX, CAPRICE, BESS, AMS)

Earth

AMS STS91 Mission - June 1998 Science Results **Proton Spectra(1)** AMS Data Fit to Φ_0/R^{γ} for 10GV < R < 200GV : $\gamma = 2.78 \pm 0.009$ (fit) ± 0.019 (sys) $\Phi_0 = 17.1 \pm 0.15$ (fit) ± 1.3 (sys) ± 1.5 (γ) GV ^{2.78}/(m² s sr MeV)

27

- Most precise measurements from HEAO-3
- Operated for 8 months in 1979 1980
- 7 million events with $4 \le Z \le 28$
- Charge resolution 0.12 0.2 units
- Absolute fluxes from 0.6 to 35 GeV/n
- Systematic Errors $\sim 5\%$

Deuterium and

Higher Z nuclei

are important to understand

propagation effects (spallation)

- $\bullet~{\rm B/C}$ and sub(Fe)/Fe measured for 0.1 GeV/n $\lesssim E \leq 35~{\rm GeV/n}$
- Precision of $\sim 5\%$ for B/C and $\sim 10\%$ for $\rm sub(Fe)/Fe$
- Data consistent with 9 g cm^{-2} crossed by primary CR

Testing the trapping time in our galaxy

- Radioactive nuclei $\equiv CR$ Chronometers
- ¹⁰Be ($t_{1/2} = 1.51$ Myr) ²⁶Al ($t_{1/2} = 4.08$ Myr)
- Measurements in space $E \approx 100 \text{ MeV/n}$
- Balloon measurement

 $0.3~{\rm GeV/n} \lesssim E \lesssim 2~{\rm GeV/n}$

Today.....

CR Hadronic Component

Hydrogen

- 0.1 GeV $\lesssim E \lesssim 100$ GeV Spectrometers: within 5%
- 100 GeV $\lesssim E \lesssim 1$ TeV Calorimeters: within $\approx 25\%$
- 1 TeV $\lesssim E \lesssim 1000$ TeV Emulsion Chambers: within $\approx 25\%$

A-ESO Workshop 2002

Atmospheric neutrinos relevant for v oscillation searches are produced by CR with energy exceeding 10 TeV interacting with the atmosphere

Accurate knowledge of the CR primary Flux and composition over the entire Earth is possible only with space born detectors

AMS01 data are now the reference for atmospheric neutrinos calculation Precision measurement can provide nice surprises: observation of high energy Cosmic Rays trapped and quasi-trapped in the earth magnetic field at low altitudes (few 100s Km)

CR interaction with the geomagnetic field

Down going proton Flux

AMS belts vs Van Allen belts

- Van Allen belts:
 - Low energy from $\sim 1 \text{ MeV}$ to $\sim 100 \text{ MeV}$
 - Contains e-, p
 - High L-shells ⇔ high altitude
 - Life time O(years) => trapped

 ⇒Decays of neutrons produced in interactions of primary with the atmosphere (CRAND)
 ⇒ Solar wind induced magnetic storms

AMS belts vs Van Allen belts

- AMS belts:
 - High energy from $\sim 1 \text{ GeV}$ to $\sim 10 \text{ GeV}$
 - Contains e^+ , e^- , p, ${}^{3}He$
 - e+ over e- dominance
 - Low L- shell \Leftrightarrow low altitude
 - Life time O(seconds) => quasi trapped (but also stably trapped component observed)

=> Secondary production from CR interaction with atmosphere

Future experiments

Balloons

Ultra Long Duration Balloon program (ULDB)

- Space-Borne
 - Magnetic Spectrometers

mostly spectrometers $2003/4 \rightarrow$

calorimetric >2010

ACCESS

* Energy Spectra

 $1 \leq Z \leq 28$ for $E \lesssim 10^{15} \; eV$

* Individual Element Abundances

Z > 28

FUTURE MAGNETIC SPECTROMETERS

AMS01 vs AMS02

AMS01

AMS02

Improved detector (larger acceptance, 5 times stronger magnetic field) 41 Largely improved particle id (TRD, RICH, EM Calorimeter)

...our knowledge of CR up to several TeV will be largely improved

Part B Searching for new particles

Nuclear anti-matter search

Strangelets

Dark matter searches Anti-protons Anti-deuteron Positrons/electrons Gamma rays

Ultraheavy particle searches EEHCR Neutrinos

Anti matter

The Big Bang requires the existence of antimatter universe

CERN FNAL

Strong CP Violation (not yet observed) and Baryon Number Violation (Proton decay not yet observed) Then Grand Unified Theories

ntimatter Unive

or Electroweak Theories predicts

Magnetic Monopole Baryogenesis: or Light Higgs or Massive neutrinos

44

Measure

Rigidity (R, R1, R2) Sign of Rigidity Absolute value of Z Velocity (β) **Apply cuts Test antiHe hypothesis**

Compute limit

Strange Quark Matter, Strangelets

Normal Matter is made up of nucleons (neutrons, protons) each with 3 *up* and *down* quarks

Lumps of strange quark matter (Strangelets) are a single "super nucleon" with many *up*, *down* and *strange* quarks.

- •Low charge to mass ratio
- •Mass from ~100 to ~10⁵⁷ times proton mass
- Many interesting, unusual properties

Carbon Nucleus

Strangelet

J. Sandweiss, J. Madsen

Dark Matter in the Universe

• At all scales (galaxies, clusters, superclusters..) the visible mass is not sufficient to explain the observed dynamical effects

 $\Omega_{\rm h} < 0.03$, h=0.7 ± 0.1

before CMB data \rightarrow

 $\Omega_{\rm DM} > 0.95$

after Boomerang →

 $\Omega_0 = 1$

together with high-z Supernova data \rightarrow

 $Ω_0 = 1$ $Ω_{DM} = 0.2 - 0.3$ $Ω_A = 0.6 - 0.7$ 48

The SUSY DM solution

Supersymmetry links the existing SM particles to a set of new heavier super particles through R-parity conservation:

R=1 for SM particles

R=-1 for SUSY particles

R-conservation requires that the Lightest SUSY Particle (LSP) is stable.
 LSP is heavy (LEP > 45 GeV) this can be a good candidate for CDM.

 $R = (-1)^{3B-L+2S}$

• SUSY can be reduced to a 7 parameters (!) theory:

- higgsino mass parameter, **µ**
- gaugino mass parameter, M₂
- ratio of the Higgsino vacuum expectation values, tanβ
- mass of the CP-odd Higgs, **m**_A
- scalar mass parameter, **m**₀
- Trilinear soft SUSY breaking parameters A_{b}/m_{0} , A_{t}/m_{0}
- LSP (neutralino) can be espressed as superposition of the neutral gauge (γ and W) and Higgs boson superpartners:

$$\tilde{\chi}_{1}^{0} = N_{11} \tilde{B} + N_{12} \tilde{W}^{3} + N_{13} \tilde{H}_{1}^{0} + N_{14} \tilde{H}_{2}^{0}$$
Bino, Wino and Higgsinos

- Parameters of this superposition define the LSP
 - mass, <mark>Μ</mark>χ
 - cosmological density, $0.1 < \Omega \chi < 0.3$
 - annihilation cross section, σχχ
 - annhibition **BR's** into detectable particles. In CR : \overline{p} , e+, D, γ

Higgsino Mixed Gaugino

Anti proton spectrum and SUSY DM

Low energy anti-proton spectrum

Large corrections at low energy induced by correcting solar modulation

High energy anti-proton spectrum

- The background shape has much less uncertainty.
- No effect from solar modulation.
- Rate from supersymmetry are indeed too small :
 - high χ mass and Flux $\propto 1/M_{\chi}^{-2}$
 - Unless hypothesis on the Dark Matter distributions (clumps of DM)

High statistics space born experiments in the near future will allow a precise measurements of the High Energy Spectrum

Pamela 10⁴ anti-p in 2 y

Roberto Battiston CERN-ESA-ESO Workshop 2002

Remember: cosmic beam calibration

Theoretical

Spallation processes

-Theory predicted a very distinctive spectrum at low energy

- -Flat for χ annihilations.
- -Suppressed from $(pp \rightarrow anti-p + X)$.
- -more complete computations include
 - -Inelastic scattering (non annihilating)
 - -Scattering on Helium

Uncertainty on the normalization from measurements from HEAO3 (1990) : 25%

Antideuterons and SUSY DM

- Anti-proton spectrum at low E appears to be less favorable than initially anticipated to probe an additional spectrum of exotic origin:
 - No distinctive spectrum.
 - Solar wind modulation not so well known.
 - Normalization still uncertain (even if improved).
- Anti-Deuterons seems to be a good signature
 - The χ signal has a flat spectrum (as for anti-protons)
 - The background component is suppressed at low energy.
 - But Flux is smaller.

Anti-D dominant over anti-P at low energies

4 MSSM scenarios considered AT maximum / minimum solar modulation

Promising for long exposures large acceptance in space

Roberto Battiston CERN-ESA-ESO Workshop

e+ e- spectra and SUSY DM

From the first direct evidence of CR electrons.....

J.A. Earl, PRL 6(1961) 125

Balloon Flight: May 1960 Residual atm : 4.5 gr cm⁻²

Multiplate cloud chamber λ = 5.5 X₀

11 electrons 0.5 -3 GeV 6 photons 284 p

$$I_e/I_p = 3 + / -1\%$$

measurements from balloons...

Leaky box

0.1

/// Errors for leaky box

1

Energy (GeV)

10

100

0.04

0.02

 No component to explain a chang of slope

SUSY fit to HEAT positron excess around 10 GeV

Need enhancement to have enough rate (clumpy DM distributions). Does explain " the bump" really

Positrons in AMS-02

- Spectrum after 3 years of data taking.
- Improvement on range and error with respect to available measurements.
- Region around 7 GeV will be well measured.
- $\sim 30\%$ stat error at 300 GeV.
- ~1% stat error at 50 GeV. Sensitivity to exotic fluxes $> 10^{-7} E^{-2}(cm^2 .s.sr.GeV)^{-1.}$

One of the most favourable SUSY model

High Energy data on electrons have reached the TeV range

CALET experiment on the japanese exposed facility on the ISS (>2006)

Electron 1 TeV

Proton 3 TeV

X Y81.0 - 1
16 NEXT CONI BACK KILL

Gamma 100 MeV

Gamma 1 GeV

Gamma 10 GeV

t parks, in
the second se
i suite s

Detection limits for point sources and diffuse components CALET detector on the ISS

Gamma rays and SUSY DM

AMS02- γ ≥ 2005 Agile ≥ 2003 GLAST ≥ 2006

Egret on CGRO stopped in 1999/2000

Search for the Nature of Dark Matter

Contours of photons intensity in units of 10⁻⁵ ph cm⁻² sec⁻¹ sr⁻¹ for $E\gamma$ >1GeV, after subtraction of "best estimate of Galactic Diffuse model. Data indicates presence of a galactic halo (Dixon et al. 1998).

Angular resolution of space born γ -ray Detectors

Effective area of gamma ray detectors

SUSY D.M. γ fluxes above E_{thr} vs Point Source Sensitivity

Interesting to consider sensitivity at lower E_{thr} for GLAST or AGILE (see Morselli's poster)

Exploration of SUSY parameter space (next 5-10 years)

from cosmic rays esperiments

Combining searches in different channels could give (much) higher sensitivity to SUSY DM signals

Ultraheavy particle searches EECR EE Neutrinos

AGASA

The universe is opaque to EECR except neutrinos (GKZ cutoff)

Extreme Universe Space Observatory - EUSO

Leonides storm seen from space Fe, 1 mm³, 40 km/s , E = 0.5 J 1 proton, E= 10²⁰ ev = 16 J

Credits to P. Jenniskens (NASA/Ames, SETI Inst

Ultra-High Energy Neutrino Flux Predictions

Table 1.3 - Neutrino event rates with *EUSO* for four major origins. The energy dependence of the neutrino cross section $(\sigma \propto E^{0.5})$ is applied to the calculations. Targets used here are one-half of atmosphere and a partial Earth crusts (2000 r.1. at 10^{20} eV). The ratio of the event rate in the atmosphere and Earth-crust at 10^{20} eV is ~ 1:2. The numbers represent the interacted events of only v_{μ} and v_{e} .

Sources	$\#/\text{yr} \ (\text{E} \ge 10^{19} \text{ eV})$	$\#/\text{yr} (E > 10^{20} \text{ eV})$	Source Location	β for (E ^{-β} dE)
Greisen v's	2 - 10	0.1 - 2	Isotropic & uniform	> 3
TD v's	10 - 100	5 - 40	Discrete	~ 1.5
GRB v's	0 - 80	0 - 50	Point source; isotropic	~ 2; ~ 1
Blazar v's	< 10	< 1	Point source; isolated	~3.5

Table 1.2 - Target mass for the *EUSO* satellite. The target amount is: (1) air target for ordinary downward fluorescence method, (2) Earth crust for near-horizontal upward showers, (3) Earth crust for vertical, upward v_{τ} showers (E>10¹⁵ eV).

EUSO	Air (1)	Earth Crust (2)	Earth crust (3) (0.5 km at 10^{15} eV)
v -Target mas	$\sim 10^{13}$ tons	$\sim 2 \times 10^{12}$ ton (crust)	$6.5 \times 10^{14} \times (E/10^{15} \text{ eV})$ tons

The largest planned ground experiment for neutrino observation (ICECUBE) has 10⁹ tons target mass.

Comparison of UHECR Experiments

Study of Cosmic Rays with modern instruments, one hundred years after their discovery, still giving important information about our Universe.

Space Experiments gives today accurate measurements of Cosmic Rays up to O(100) GeV \rightarrow High Energy CR belts, Atmospheric v

Space born precision CR measurements will extend to O(TeV) during the next few years.

DISCOVERY POTENTIAL

High precision CR measurements from space in the 10-1000 GeV region have a potential to discover the origin of Dark Matter or to discover nuclear antimatter.

EECR experiments from space have a potential for discovery new superheavy particles and have also a large potential for HE neutrino astronomy

Internatioal Advisory Committee

M. Aguilar Benitez (CIEMAT R.Barbieri (Pisa) R. Battiston (Perugia) G. Bignami (ASI) T. J.-L. Courvoisier (Geneva K. Danzmann (Garching) A. Gimenez (ESA) E. larocci (INFN) M. Kamionkowski (Caltech) L. Majani (CERN) P. Michelson (Stanford) M. Paniasiuk (MSU) P. Picozza (Roma 2) M. Salamon (NASA) L. Scarsi (Palermo) R. Sagedeev (Marvland) M. Spiro (Saclay) S.C.C. Ting (MIT) M. Turner (FERMILAB) S. Vitale (Trento) A. Yamamoto (KEK)

First International Conference on Particle and Fundamental Physics in Space La Biodola, Isola d'Elba (Italy) He May 14th to May 19th, 2002 TOPICS

Space Par

Seach for antimatter Search for dark matter Cosmic Rays composition Gamma astrophysics Neutrino physics Gravitation and fundamental physics Space detectors and technologies Interdisciplinary space physics

Secretariat

L.Lilli (Pisa) I. Panico (Perugia) Local organizing Committee

email: spacepart@pi.infn.iB. Alpat (Perugia) B. Bertucci (Perugia

Mail address: INFN - Sezione di Pisa

Via Livornese 1291 L. Gammaitoni (p 1-56010 S. Piero a Grado (MI)Grassi (Pisa) tel. +39 050 880 327 P. Marrocchesi (S fax +39 050 880 318 M.M. Massai (Pis

B. Bertucci (Perugia) S. Braccini (Pisa) F. Cervelli (Pisa) L. Di Masso (Perugia) L. Gammaitoni (perugia) do (MI)Grassi (Pisa) P. Marrocchesi (Siena) M.M. Massai (Pisa)

www.pg.infn.it/spacepart

