resent status of neutrino mixing and masses om oscillation experiments: what future ?

Napoli, 9 December 2004

Antonio Ereditato

Where are we now ?

<u>What do we know about neutrino masses and mixing?</u>

there exist 3 'light' neutrinos (LEP): $Nv = 2.984 \pm 0.008$ limits from direct mass measurements are small (tritium & cosmology):
WMAP: $\Sigma_i m_i < 0.7 \text{ eV} (95\% \text{ CL})$ solar and atmospheric neutrino deficit: neutrinos mix (oscillations) \rightarrow
they are massive:
PMNS matrix (3 x 3)oscillation parameters:2 large mixing angles $\theta_{sol} \sim \theta_{12}$, $\theta_{atm} \sim \theta_{23}$
2 independent mass splittings:
 $\Delta m_{atm}^2 \sim \Delta m_{12}^2$
 Δm_{23}^2

<u>What we do not know...</u>

- absolute mass values (and why are they small ?)
- why θ_{12} and θ_{23} angles are large and θ_{13} seems very small or null ?
- is mass hierarchy the same as for charged leptons (sign of Δm_{23}^2)
- is there any CP violating phase in the mixing matrix ?

NOTE: assumed that there is no LSND effect ! Wait for MiniBoone...

The Sun vs θ_{12} and Δm_{12}^2

Neutrino Reactions in SNO

- Q = 1.445 MeV
- good measurement of v_e energy spectrum
- some directional info $\propto (1 1/3 \cos \theta)$
- v_e only

$$\nu_x + d \rightarrow p + n + \nu_x$$

- Q = 2.22 MeV
- measures total $^8B~\nu$ flux from the Sun
- equal cross section for all active ν flavors

$$\nu_x + e^- \rightarrow \nu_x + e^-$$

- low statistics
- mainly sensitive to $\nu_e,$ some ν_μ and $\,\nu_\tau$
- strong directional sensitivity

SNO analysis

wo possibilities:

$$\frac{\text{CC}}{\text{NC}} = \frac{v_{\text{e}}}{v_{\text{e}} + v_{\mu} + v_{\tau}}$$

Advantages:

- NC gives total flux directly
- · Cross section uncertainties cance

$$\frac{CC}{ES} = \frac{v_{e}}{v_{e} + 0.14(v_{\mu} + v_{\tau})}$$

Advantages:

- ES excess points to Sun
- Can match energy regimes
- Super-K precision measurement

Signal/Background Spectra

Monte Carlo Predictions

(pure ⁸B only)

Extracting Signals

Can use derived observables (R^3 , $cos\theta_{sun}$, and E) to produce pdfs. CCNC ES 0.08 0.04 0.1 Energy 0.06 stribution 0.04 0.02 0.05 0.02 o o o 10 10 10 15 5 15 5 15 Kinetic Energy (MeV) 0.03 Radial 0.04 0.06 0.02 0.03 stribution 0.04 0.02 0,01 0.02 $^{3}, R_{AV} = 1$ 0.01 o ø Ο R^a (AV rodII) 0.03 Solar 0.2 0.02 0.02 Direction 0.01 0.1 0.01 stribution o ο o o 0 cosΘsun

Max. Likelihood fit for relative signal amplitudes

Signal extraction (units: 10⁶ cm⁻²s⁻¹)

$$\Phi_{SNO}^{CC(8B)} = 1.75 \pm 0.07 + 0.12 - 0.11 \pm 0.05$$
SNO
$$\Phi_{SNO}^{ES(8B)} = 2.39 \pm 0.34 + 0.16 - 0.14$$
SNO
$$\Phi_{SNO}^{ES} - \Phi_{CC}^{CC} = 0.64 \pm 0.40$$
1.6 \sigma (SNO)
$$\Phi_{SNO}^{ES(8B)} = 2.32 \pm 0.03 + 0.08 - 0.07$$
SuperK
$$\Phi_{SK}^{ES} - \Phi_{SNO}^{CC} = 0.57 \pm 0.17$$
3.3 \sigma (SNO+SuperK)

Appearance in the solar flux of active neutrino $\neq v_e$ Pure $v_e \rightarrow v_{\text{sterile}}$ oscillation excluded at more than 3σ

Oscillations Analysis: Before SNO

Oscillation Analysis: Global Solar

KamLAND

1st result

2 nd result

Data Summary

from March 4 to October 6, 2002 5.1 live days, 162 ton-year exposure

nalysis threshold 2.6 MeV

expected signal	86.8 ± 5.6
BG	1 ± 1
observed	54

leutrino disappearance at 99.95% CL.

 $0.611 \pm 0.085(\text{stat}) \pm 0.041(\text{syst})$

amLAND collaboration, Phys.Rev.Lett.90(2003)021802

Data Summary

from 9 Mar 2002 to 11 Jan 2004 515.1 live days, 766.3 ton-year exposure ×4.7 exposure (×3.55 live time, ×1.33 fiducia

expected signal BG	$365.2 \pm 23.7 \\ 7.5 \pm 1.3$	
observed	258	
Neutrino disappearance at 99.995% Cl		
$R = 0.686 \pm 0.044 (\mathrm{stat}) \pm 0.045 (\mathrm{stat})$		
$R = 0.582 \pm 0.069 \pm 0.039$ for Mar to Oct 2002		

is consistent with first results

KamLAND collaboration, hep-ex/0406035

Evidence for reactor neutrino disappearance

L/E dependence

$$\begin{array}{ll} \text{Oscillation} & P_{\mathrm{ee}} = 1 - \sin^2 2\theta \sin^2(\frac{\Delta m^2}{4}\frac{L}{E}) \\ \text{decay} & P_{\mathrm{ee}} = (\cos^2\theta + \sin^2\theta \exp(-\frac{m_2}{2\tau}\frac{L}{E}))^2 & \text{v.d.Bager et al.,PRL82,2} \\ \text{decoherence} & P_{\mathrm{ee}} = 1 - \frac{1}{2}\sin^2 2\theta(1 - \exp(-\gamma\frac{L}{E})) & \text{E.Lisi et al.,PRL85,1166} \end{array}$$

Solar + KamLAND global analysis

Unnoticed BG slightly changes the re-

н

10⁻²

 3σ

5.4 - 9.4

1.1 - 3.4

< 0.061

 $sin^2 \theta_{13}$

10⁻¹

2.

0.6

0.16

0.26

<

Interesting results from SK with atmospheric neutrinos: L/E distribution (for selected high-resolution events) and NC/CC ratio (τ or sterile neutrino ?)

 \rightarrow models alternative to oscillation are highly disfavored by more than 3σ ospheric neutrino deficit is due to $v_{\mu} \rightarrow v_{\tau}$ oscillations (not to generic conversi

oals of planned and future neutrino beam experiments:

observe v_{τ} appearance \rightarrow ...find the body after the murder... s there (some) room for a sterile neutrino? \rightarrow MiniBoone and v_{μ} disappearance neasure L/E dependence \rightarrow atmospheric and WBB experiments (fixed L) accurately measure the two Δm^2 , θ_{12} and $\theta_{23} \rightarrow is \theta_{23}$ exactly $\pi/4$? ind the value of θ_{13} from $P(v_u - v_e) \rightarrow benchmark measurement$ show MSW matter effects (without CP violation effects) \rightarrow mass hierarchy show CP violating effects (without matter effects) \rightarrow the ultimate goal ? ..be ready for the unexpected ! -> experiments may be running for long time..

focus on accelerator experiments

eutrino mixing matrix and general 3 neutrino oscillation probabili

$$P(\nu_{\ell} \to \nu_{\ell'}) = |\sum_{i} U_{\ell i} U_{\ell' i}^{*} e^{-i(m_{i}^{2}/2E)L}|^{2}$$
$$= \sum_{i} |U_{\ell i} U_{\ell' i}^{*}|^{2} + \Re \sum_{i} \sum_{j \neq i} U_{\ell i} U_{\ell' i}^{*} U_{\ell j}^{*} U_{\ell' j} e^{i\frac{|m_{i}^{2} - m_{j}^{2}|L}{2E}}$$

The formula simplifies under the empirical assumptions that:

- $\Delta m^2_{atm} >> \Delta m^2_{sol}$
- L is comparable to the atmospheric oscillation length (~ 1000 km)
- the angle θ_{13} is small

the special case of $v_{\mu} \rightarrow v_{e}$ oscillations, we have:

$$P_{1} = \sin^{2} \theta_{23} \sin^{2} 2\theta_{13} \left(\frac{\Delta_{13}}{B_{\pm}}\right)^{2} \sin^{2} \frac{B_{\pm}L}{2}$$

$$P_{2} = \cos^{2} \theta_{23} \sin^{2} 2\theta_{12} \left(\frac{\Delta_{12}}{A}\right)^{2} \sin^{2} \frac{AL}{2}$$

$$P_{3} = J \cos \delta \left(\frac{\Delta_{12}}{A}\right) \left(\frac{\Delta_{13}}{B_{\pm}}\right) \cos \frac{\Delta_{13}L}{2} \sin \frac{AL}{2} \sin \frac{B_{\pm}L}{2}$$

$$P_{4} = \mp J \sin \delta \left(\frac{\Delta_{12}}{A}\right) \left(\frac{\Delta_{13}}{B_{\pm}}\right) \sin \frac{\Delta_{13}L}{2} \sin \frac{AL}{2} \sin \frac{B_{\pm}L}{2}$$

$$P(\nu_{\mu} \to \nu_{e}) = \Sigma_{i=1,4} I$$

atmospheric part

	solar	part
inte	rferen	ice.

 θ_{13} is the link betwee solar and atmospheric oscillations

ere

 $\Delta_{ij} = \frac{\Delta m_{ij}^2}{2E_{\nu}}$ $A = \sqrt{2}G_F n_e$ $B_{\pm} = |A \pm \Delta_{13}|$ $J = \cos\theta_{13}\sin 2\theta_{12}\sin 2\theta_{13}\sin 2\theta_{23}$

the \pm signifies neutrinos or antineutrinos

In vacuum, at leading order:

$$P(\nu_{\mu} \rightarrow \nu_{e}) \propto \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \sin^{2} \frac{\Delta m_{23}^{2} L}{4E}$$

 $\nu_{\mu} \rightarrow \nu_{e}$ oscillations:

interference

Solar part: small Δm^2 , large mixing

Sub-leading: large Δm^2 , small mixing (?

 \rightarrow The two effects can compete

vacuum and in absence of δ -phase:

$$\left(\nu_{\mu} \rightarrow \nu_{e}\right) \approx \cos^{2} \theta_{23} \sin^{2} 2\theta_{12} \left(\frac{\Delta_{12}L}{2}\right)^{2} + \sin^{2} \theta_{23} \sin^{2} 2\theta_{13} \sin^{2} \left(\frac{\Delta_{13}L}{2}\right)^{2}$$

solar part

atmospheric part

ative importance:

$$= \frac{\sin^2 \theta_{23} \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta_{13}L}{2}\right)}{\cos^2 \theta_{23} \sin^2 2\theta_{12} \left(\frac{\Delta_{12}L}{2}\right)^2} \approx \frac{\sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta_{13}L}{2}\right)}{\sin^2 2\theta_{12} \left(\frac{\Delta_{12}L}{2}\right)^2} \approx \frac{\sin^2 2\theta_{13}}{\sin^2 2\theta_{12}} \left(\frac{\Delta_{12}L}{2}\right)^2$$

merically:

$$\frac{1}{n^2 2\theta_{12}} \left(\frac{\Delta_{13}}{\Delta_{12}}\right)^2 \approx 10^3$$
Solar > atmospheric for

$$\frac{\sin^2 2\theta_{13}}{\sin^2 2\theta_{13}} < \approx 10^4$$

For $\sin^2 2\theta_{13} < 10^{-3}$, correlations with solar parameters are important to determine sensitivity. NF down to 10^{-5} ??

Work in progress...

K2K: the mother of all LBL experimen

<u>per-K</u> detector) kton Water erenkov det.

12GeV PS@KEK

Ge

Mt. Tsukubs

• ν beam line

Super-Kamiokande

- Beam monitor
- Near detectors

near/far detectors comparise event rate and energy spect shape

 v_{μ} disappearance experiment to probe the SK atmospheric neutrino result.

Analogous case to Kamland vs solar neutrino experiments

K2K looking for electron appearance

Next to come on duty: MINOS in the NuMi neutrino beam

- w E neutrinos (few GeV): v_{μ} disappearance experiment
- x10²⁰ pot/year \rightarrow 2500 v_µ CC/year
- pmpare Det1-Det2 response vs E \rightarrow in 2-6 years sensitivity to Δm^2_{atm}
- ain goal: reduce the errors on Δm_{23}^2 and $\sin^2 2\theta_{23}$ as needed for $\sin^2 2\theta_{13}$ measurement

electron appearance in MINOS

In 4 years running (~2010) MINOS could improve the CHOOZ limit on $sin^22\theta_{13}$ from ~0.14 to ~0.06, the 3σ "evidence" up to ~0.085

au appearance at LNGS in the CNGS be

Important investment: think about experiments beyond present generation ? Low E or off-axis experiment

Start 20

- High energy beam: <E> about 20 GeV: τ appearance search
- 4.5 x10¹⁹ pot/year from the CNGS. In the hypothesis of no oscillation:
- 2600 ν_{μ} CC/year per kton detector mass
- Assuming $v_{\mu} v_{\tau}$ oscillation, with parameters sin²2 θ =1 and Δm^2 =2.5x10⁻³ eV²:

15 v_{τ} CC interactions /year per kton

- construction well advanced: on schedule.
- Two experiments at LNGS: OPERA and ICARUS

OPERA experiment at LNGS: rebirth of the emulsion technique

tector: 1800 ton emulsion/lead bricks (ECC nique) complemented by tracking scintillator es and two muon spectrometers

- ustrial emulsion production and handling
- ed huge scanning power/speed: > tens of matic microscope running in parallel 0 cm²/hour (advances of the technique)
- ecialized, single task experiment v BG: <1 event (τ track reconstruction) v statistics: about 10 events/5 years at hinal CNGS intensity @ SK parameter values: istics goes like (Δm^2)² n at beam intensity increase
- stallation in progress

Measure θ_{13}

Simple considerations

- $\rightarrow v_e$ oscillation as a tool to measure θ_{13} with accelerator neutrino experiments.
- ure 'Super-CHOOZ-like' reactor experiments are difficult (and not covered here). sting or planned atmospheric neutrino detectors can be limited by statistics.

hall effect (< 5% from CHOOZ) ompt v_e contamination at % level (accelerator neutrino beams) ain BG: π° production in NC and CC interactions

 \mathbf{v}_{μ} oscillations can solve most of the problems but hard to make v_{e} beams it for a next generation facilities)

any case high intensity is a must !

Need high intensity: future neutrino faciliti

The first Super-Beam: off-axis T2K, from Tokal to SK

T2K v_u disappearance

Harvest for T2K (~2013-20

- determine Δm^2_{23} with an uncertainty of **10**⁻⁴
- know if $\sin^2 2\theta_{23} = 1$ with an uncertainty of **0.01**

• appearance: evidence for nor zero $\sin^2 2\theta_{13}$ if larger than **0.01** (90% CL limit at **0.006**)

T2K v_{e} appearance: measurement of θ_{13}

 sin²2θ₁₃>0.006 (90%)

 sin²2θ₁₃>0.018 (3σ)

An off-axis experiment in the NuMI beam: NovA

- ecent proposal (March 04); nominal NuMI beam: 0.4 MW + upgrade?
- approved: 15 % of far detector by 2008. Completed by end 2011
- ar detector: 50 kton @ Ash River (MN) 810 km from Fermilab (12 km, mrad off-axis)
- echnique: particleboard/liquid scintillator with fiber/APD R/O (or RPCs)
- ear detector: same as far, 1 ton fid. mass; also use MINERVA?

nventional detector design: well known technique of low isity, fine grained calorimeters (*e.g.* CHARM II at CERN)

st of about \$150 M

e: this is basically a single task detector (schedule, npetition with T2K, etc.)

unlike T2K, NovA is sensitive to matter effe

Comparison between MINOS, T2K and NovA

Assume 5 years running, $\Delta m_{23}^2 = 2.5 \times 10^{-3} \text{ eV}^2$, 3σ evidence for non zero sin² θ_{13} :

Experiment	Run	p.o.t.	3σ evidence
MINOS	2005-2008	16 x 10 ²⁰	> 0.080
T2K	2009-2013	50 x 10 ²⁰	> 0.018
NovA (Booster) NovA (p driver)	2010-2014 ?	20 x 10 ²⁰ 100 x 10 ²⁰	> 0.015-0.020 > 0.005-0.007

e Japanese project has an **existing** far detector and an **roved** beam (in construction): **possibility of discovery**

addition, it would be worth considering elsewhere new eration detectors with an extended physics program

some chance, next generation experiments on θ_{13} d measure mass hierarchy and CP effects

Pin down CP phase and mass hierarchy

Detecting CP violating effects $A_{CP} = \frac{P(\overline{\nu}_e \to \overline{\nu}_\mu) - P(\nu_e \to \nu_\mu)}{P(\overline{\nu}_e \to \overline{\nu}_\mu) + P(\nu_e \to \nu_\mu)} \simeq \frac{\sin 2\theta_{12}}{\sin \theta_{13}} \cdot \sin \delta \cdot \sin \frac{\Delta m_{12}^2 L}{4E}$ est method: n vacuum) Δm_{12}^2 and sin $2\theta_{12}$ large (LMA solar): OK ! it <u>requires</u>: larger effects for long L: 2nd oscillation maximum wever... $u_{\mu} ightarrow u_{e} \) \propto \sin^{2}2 heta_{13} = A_{CP} \propto rac{1}{\sin heta_{13}}$ $sin^2 2\theta_{13}$ small: low statistics and large asymmetry $sin^2 2\theta_{13}$ large: high statistics and small asymmetry impact on the detector design ..and: oscillations are governed by Δm^2_{atm} , L and E: $P(\nu_{\mu} \rightarrow \nu_{e}) \propto \sin^{2} \frac{\Delta m_{23}^{2} L}{\Delta E}$ $E \approx 5 \text{ GeV} \rightarrow L \approx 3000 \text{ km}$

flux too low with a conventional LBL beam

mass nierarchy from matter oscillation

trinos oscillating through matter (MSW effect):

- erent behavior of different flavors due to the presence of electrons in the medium
- ditional phase contribution to that caused by the non zero mass states.
- mmetry between neutrinos and antineutrinos even without CP violating phase in the matrix
- related oscillation length L_M , unlike L_V (vacuum), is independent of the energy
- an example L_M (rock) is ~ 10000 km while L_M (Sun) ~ 200 km
- e limit of Δm^2_{sol} approaching zero (for which there are no CP effects) and of running at the ospheric oscillation maximum, the asymmetry between neutrinos an antineutrinos equal to

$$\frac{P(\nu_{\mu} \to \nu_{e}) - P(\bar{\nu}_{\mu} \to \bar{\nu}_{e})}{P(\nu_{\mu} \to \nu_{e}) + P(\bar{\nu}_{\mu} \to \bar{\nu}_{e})} = \frac{2E_{\nu}}{E_{R}} \quad \text{for low } E_{\nu} \quad \text{with} \quad E_{R} = \frac{\Delta m_{atm}^{2}}{2\sqrt{2}G_{F}\rho_{e}} \approx 11GeV$$

he measurement of this asymmetry one can determine whether ∆m²₂₃ is positive or negati rarchy)

$$2\theta_{13} \quad \Rightarrow \overline{\sin^2 2\theta_{13}} \left(\frac{\Delta m_{13}^2}{\Delta m_{13}^2 \pm 2\sqrt{2}G_F N_e E_\nu} \right)^2$$

$$n_{13}^2 | \Rightarrow |\Delta m_{13}^2 \pm 2\sqrt{2}G_F N_e E_\nu$$

For $E_v \sim E_R$ large amplification of $P(v_\mu \rightarrow v_e)$ at long distances

Experiments with 2nd generation Super-Beams, Beta-Beams, v-fact Start 2015.

Golden goal: detect CP violation (if θ_{13} not zero!)

gh intensity is mandatory: two possible approaches for L/E :

ng/high (e.g. BNL-Fermilab projects):

nort/low (e.g. CERN-SPL to Frejus):

illation Nodes for $\Delta m^2 = 0.0025 \text{ eV}^2$ FNAL-SOUDAN BNL-HOM **3**π/2 **5**π/2 **7**π/2 motion dominated 500 3000 1000 25001500 Baseline (km)

- matter effects increase signal (E_{max2}/E_{max1}) • CP effects increase with L ($3\pi/2 \text{ vs } \pi/2$)
- below threshold for BG (? ... Fermi motion
- atmospheric neutrino BG
- antineutrino x-section small
- Fermi motion limits resolution for μ events
- For both approaches: need to know v_{e} BG energy dependence

General remarks:

- a beam/detector complex of this type, given its complexity and a must be considered as a facility running for a few decades and h able to accomplish general purpose neutrino and astroparticle physics experiments as well as ultimate matter stability searches

- There can be degeneracies in the determination of matter and (effects: more (complementary) experiments are needed to solve

t: 48m x 50m x 250m each

DETECTORS

500-1000 kton Water Cerenkov 'a la SK' (Hyper-K, UNO) are considered as baselin

Rationale: exploit a well known technique aim at a 'reasonable' cost

However, this is not the only possibility

Water Cerenkov technique

- efficient for 'few' or 1-ring events (QE), small x-section, large detector m
- good π^0 rejection if γ are well separated
- at low energy confusion between μ and π tracks
- can go down with energy threshold (5 MeV for 40% coverage) ?
- well established in Japan: success of SK but limited experience elsewhere
- Hyper-K project well advanced: decision in 2012
- PMTs: leadership of Hamamatsu (very large production will be required)
- alternative photo-detectors options unclear: R&D & cost assessment needed.
- huge cavern: cost and complexity of excavation works

A fine grained detector can be alternative/complementary: liquid Argon TP

Electronic crates

h=20

00-600 kton Water Cerenkov (-) 100 kton LAr TPC

0 kton UNO-like Water Cerenkov

higher efficiency (multi prong interactions) and BG reje

LAr TPC: imaging with bi-phase R/O LNG tanker technology 100 kton LAr; auto-refrigerating

 $\Phi \approx 70 m$

Perlite insulation

1111

Neutrino detection: LAr IPC vs water Cerenkov

 $v_{\mu} + X \rightarrow \mu^{-} + many \ prongs$

ICARUS 50 liters

+ p

 $V_{\mu} + n \rightarrow \mu^{-}$

Multi prong event detection not possible with water Cerenl

Super-Kamiokande

Run 7436 Event 1405412 99-06-19:18:42:4 Inner: 516 hits,1018 pE Outer: 2 hits, 2 pE (in-tim) Trigger ID: 0x0 D wall: 240.4cm

Resid(ns)

FIRST K2K EVENT RECORDED BY SUPER-K

$$v_{\mu} + n \rightarrow \mu^- + p$$

K2K

	Water Cerenkov (UNO)	Liquid Argon IPC	
tal mass	650 kton	100 kton	
ost	≈ 500 M\$	Under evaluation	
$ ightarrow$ e π^{0} in 10 years	10³⁵ years ε = 43%, ≈ 30 BG events	3x10 ³⁴ years ε = 45%, 1 BG event	
$\rightarrow v$ K in 10 years	2x10³⁴ years ε = 8.6%, ≈ 57 BG events	8x10 ³⁴ years ε = 97%, 1 BG event	
$ ightarrow \mu \pi$ K in 10 years	Νο	8x10 ³⁴ years ε = 98%, 1 BG event	
l cool off @ 10 kpc	194000 (mostly $\overline{\nu}_{e}$ p→ e⁺n)	38500 (all flavors) (64000 if NH-L mixing)	
l in Andromeda	40 events	7 (12 if NH-L mixing)	
l burst @ 10 kpc	≈330 v-e elastic scattering	380 v_e CC (flavor sensitive)	
l relic	Yes	Yes	
mospheric neutrinos	60000 events/year	10000 events/year	
lar neutrinos	E _e > 7 MeV (central module)	324000 events/year (E _e > 5 MeV)	

Operation of a 100 kton LAr TPC in a future neutrino facility: Super-Beam: 460 v_{μ} CC per 10²¹ 2.2 GeV protons @ L = 130 km Beta-Beam:15000 v_{e} CC per 10¹⁹ ¹⁸Ne decays with γ = 75 The ICARUS experience plays a role, but the dete is very challenging: R&D plan must be identiand executed

full scale prototype ?

Japanese program phase 2: short L, low E

ensity up to 4 MW

ector mass up to 1 Mton

matter effects: assume s hierarchy determined where

Major T2K beam upgrade, new Hyper-K detecto 1) low energy: low π° BG 2) gigantic water Cerenkov: good demanding requirements: 2% syst. from BG subtraction and 2% data selection low $E\bar{v} \rightarrow low x$ -section

The wide energy spread requires high signal/BG ratio:

: only 1-ring events to reject most of π_0 (2-rings)

gnal: at high E matter effects increase statistics, at low E the long L makes neutrinos at the 2nd o cillation maximum, hence increasing CP violating effects by 3-5 times

al: detect CP violation with **only neutrino** (no antineutrino) exposure (2 maxima)

Oscillation parameter determination with v_{e} appearance

Assume L > 2000 km, wide band beam Δm_{32}^2 , Δm_{21}^2 , θ_{12} well known.

3 neutrino generations. $\Uparrow =$ large change $\uparrow =$ small change

		$\sin^2 2\theta_{13} > 0$	$\Delta m^2_{32} (>0,<0)$	$\delta_{CP}=(\pi/4,-\pi/4)$	$\theta_{23}(<\pi/4,>\pi/4)$
ν	$0-1.2~{ m GeV}$			\uparrow,\downarrow	\Uparrow,\Downarrow
	1.2 - 2.2 GeV	Î	-, -	(\uparrow,\Downarrow)	\downarrow,\uparrow
	$> 2.2 { m ~GeV}$	Î	(\uparrow,\Downarrow)	\uparrow,\downarrow	\downarrow,\uparrow
$\bar{\nu}$	$0 - 1.2 \mathrm{GeV}$	Ŷ	-, -	\downarrow,\uparrow	\Uparrow,\Downarrow
	$1.2 - 2.2 \mathrm{GeV}$	Ť	-, -	\Downarrow, \Uparrow	\downarrow,\uparrow
	$> 2.2 { m ~GeV}$	Ŷ	\Downarrow, \Uparrow	\downarrow,\uparrow	\downarrow,\uparrow

FERMILAB project: 8 Gev SC LIN

- upgrade Main Injector from 0.3 to 2 MW
- shoot v's to Homestake (1290 km)
- usual question about the far detector: 500 kton water C or 100 kton LAr TPC?

Another issue: NuMI off-axis phase-II ? Suppose T2K+others $\rightarrow P(v_{\mu}-v_{e}) = 0.02$

1st max:

CP ~ matter

2nd max:

ible luxurious scheme (?)

1300 km) large underground tor for v and astroparticle CS

xis: fine grained 20-50 kton tor (LAr TPC ?) at shallow with improved BG rejection

European program(s)

sioned neutrino facility

RN SPL (2 MW): low E, 10²³ protons/year er option: Beta-Beam (CERN original R&D) **/ role of CERN**: logistic and scientific center regardless ar detector site/technology

ear-far' envisioned site: Frejus laboratory derground laboratory 140 km from CERN operation agreement: IN2P3/CNRS/DSM/CEA & INFN ernational laboratory for underground physics sy access but safety issues (highway tunnel) verns have to be excavated (goal: 2008) rease working group composition ?

SPL option

- option well retained at CERN (interesting for arge community)
- ow energy neutrino beam: < 500 MeV
- mall antineutrino rate, and small x-section: ed long antineutrino run (8 out of 10 years)
- r_e and π° BG

Detector at Frejus: 500-1000 kton w Cerenkov and/or 100 kton LAr TPC

om Ne¹⁸ ~ 2-10x10¹⁰/s
$$\overline{v}_{e}$$
 from He⁶ ~ 10-30x10¹⁰/s

ions can be stored at the same time

ronmental issues (radiation)

arch for $v_e \rightarrow v_u$ oscillations:

asier detector task (μ detection)

owever, need good event reconstruction: ns in NC can fake muons

w energy makes pion production below renkov threshold

Performance

Hope: realize the SPL and/or the Beta-Beam from 2009 to 2015 and then commission for physics

 3σ sensitivity to maximal CP violation (10 years)

5 years run at δ =0 (90% CL)

A high energy Beta-Beam? Improved performance

If high energy would be chosen, possible far sites exist: e.g. LNGS, Oulu (Finland), Cuprum salt mines (Poland), etc.

st but not least: Neutrino Factories the ultimate neutrino beam experiments?

oviously, a great opportunity for neutrino physics!

- uge neutrino fluxes, increasing with muon energy
- v may range from 5 to 30 GeV, 10^{20} muon decays/year
- nly two flavors for a given polarity: $\overline{\nu}_{\mu}$ and ν_{e} or ν_{μ} and $\overline{\nu}_{e}$
- or a massive, coarse-resolution set-up: μ detection easier than e ID over π° BG (wrong sign muor
- ossible to use large mass detectors already exploited for Super- Beta- Beams (magnetic analysis
- etector can be simple, but don't forget unexpected, new physics events to be studied in great del
- principle 'very' low beam and detector BG
- from ~ 1000 to 8000 km (international enterprise by definition!)
- ery complex accelerator facility: R&D needed and being pursued worldwide (EU, USA, Japan)
- e first accelerator stage could be a proton driver for a Super-Beam
- xtremely challenging project: target, muon cooling, radiation and environmental issues, cost, etc.

(personal) concluding remarks

he glory of the massive neutrino! The evidence for neutrino oscillation mostly built-up with sol tmospheric and reactor neutrino experiments is today very robust. This has opened the way to recision studies of the mixing matrix with accelerator neutrino experiments, together with future rojects on direct mass measurements, double-beta decay, reactor, solar and atmospheric neutrir

he mass of neutrino is the first (and so far the only) indication of **physics beyond the SM**. If eutrinos are Majorana particles this gives clues to the questions of fermion masses, to the questi by 3 families, to mass hierarchy. Lepton number violation could explain the baryon asymmetry arough leptogenesis. Massive neutrinos may contribute to the energy density of the Universe. A **ascinating study has just started and must be vigorously pursued in parallel to collider EV hysics.**

unning and planned experiments will contribute to **narrow-down the errors** on the oscillation arameters and with some chance to prove that the mixing matrix is indeed 3 x 3. The next genera ill need high intensity facilities to pin down a non vanishing value of θ_{13} . Advanced detector techr ill be required to keep BG low for a real improvement of the sensitivities. This physics subject is o **utstanding importance** 'per se' but also because it will drive future initiatives.

he detection of **matter** and of **CP violating effects** will likely require a further generation of xperiments using high intensity (> 1 MW) neutrino facilities with more massive detectors. At prese vo options are being considered: a 500-1000 kton **water Cerenkov** detectors (à la SK) and 50-10 con **liquid Argon TPCs**. Solving degeneracies calls for different experiments with different arameters

(personal) concluding remarks (cont.)

In addition to the need of large mass, the detectors have to be 'general purpose' (think of tomorrow's physics), must have good energy resolution (measure oscillation parameters), good granularity (to measure channels involving e, μ , τ ,...) and adequate NC/CC separation for BG suppression. They will need to be as good for **astroparticle physics** (underground or at shallow depth) and they have to employ cost effective technical solutions/technologies.

Concerning the **neutrino beams**, a factor ~10 boost in the intensity is required. **Super-Beams** a the natural approach, based on improved LINAC or Boosters. Synergies are expected with other fields and this can increase the probability of success (funding). As far Europe (CERN) is concerned, the possibility of building **Beta-Beams** (of low and/or high energy) must be explored, being peculiar and complementary to other approaches (μ appearance). Regardless the neutrino source, the final choice of L/E must come from a global, **physics driven optimization** of facility and detector.

The issue of a **Neutrino Factory** (no more than one!) has to be considered with care. It constitutes the ultimate neutrino facility with unprecedented features but its construction would represent a huge investment for the entire community. This must be well motivated considering the state of the field at the moment of the decision to go and the synergy/competition with other possible schemes/approaches and with other large projects in particle physics (*e.g.* muon or electron collider). Its main task must be the precision study of **CP violation**, whereas the discovery could well be made with Super- o Beta-Beams, with an eye to the unexpected.

(personal) concluding remarks (cont.)

The neutrino community is **very active** and many ideas and proposals are on the floor both for th acilities and for the detectors. However, for the next (next-to-next) generation we will have to dea with 100-200 M€ (500-800 M€) experiments and with 300-500 M€ (1000-1500 M€) beam facilities

The **cost and the complexity** of these projects demand a **strong worldwide coordinated effor** between researchers and agencies, similarly to what occurs in other fields, *e.g.* for collider physic There will be resources available for a very small number of large facilities/detectors in the world. **Complementarity** of approaches and techniques is mandatory.

Therefore, choices on projects beyond the experiments presently running or being built must pragmatically take into account (and use, as far as possible) **existing facilities** and infrastructure detectors, beams). The **international competition** should not be neglected: one has always to p attention to it aiming at performing (in time) good quality measurements.