Dual R&D

towards a Wide Bandwidth and high sensitivity Dual Acoustic GW Detector

At the end of the 3 year long R&D project: guidelines for the detailed design of a dual detector with optimal sensitivity and very wide bandwidth

Gravitational wave astronomy

requires significant improvement of detector sensitivities

To fully exploit the potentialities of resonant detectors and to make them complementary to advanced interferometers a totally **new** approach is needed

dual resonator gw detector

covers the high frequency (1-7kHz) gw spectrum with high sensitivity

Ultimate sensitivity of the EGO^{*} observatory

* observatory proposed by the european gw community to the EU Design Study call 2004

Dual detector: the concept

measurement of differential deformations of two nested bodies, resonating at different frequencies and both sensitive to the gw signal

Dual: Two possible configurations

Dual sphere PRL <u>87</u> (2001) 031101

antenna pattern: isotropic

Dual cylinder PRD <u>68</u> (2003) 102004

antenna pattern:

identical to that of 2 interferometers at 45 degrees with respect to each other

Dual: a new concept of readout

- Average the deformation of the resonant masses over a wide area:
- reject high frequency resonant modes which do not carry any gravitational signal but contribute to thermal noise
- Geometrically selective readout that rejects the non-quadrupolar modes

bandwidth free from acoustic modes not sensitive to gw.

Example:

- capacitive readout -
- The detector output is proportional to: X1 + X2 - X3 - X4

Summary of new concepts and technologies for Dual

• Large area readout

• No resonant transducers (= <u>frequency</u> selection of the sensitive modes -> narrow band)

measure differential motion of massive cylindrical resonators

• Mode selective readout (= <u>geometric</u> selection of the sensitive modes -> broad band)

X1 + X2 - X3 - X4

 High cross section materials (up to 100 times larger than Al5056 used in bars)

Dual R&D : 3 main research topics

1) Detector design:	 seismic noise control (pre-filtering) high frequency (in band) mechanical vibration filtering underground operation

2) Readout system	 wide readout area and with quadrupolar symmetry quantum limited noise figures of readout wideband mechanical amplifiers

• officiancy in transducing the machanical signal

3) Test mass development
• methods to produce large, high Q masses
• material properties at low T

At the end of the 3 year long R&D project: guidelines for the detailed design of a dual detector with optimal sensitivity and very wide bandwidth

Suspension: the prefiltering

Problems:

• large low frequency motion can induce 'up-conversion phenomena' (eg. acoustic emission)

• large relative motion between the nested masses can prevent readout functioning

Goals:

- to reduce the seismic noise at the detector input
- to reduce the low frequency relative motion between the nested masses

via active pendulum suspension

passive isolation

define: active control cryogenic-environmant compliant sensors

R&D on readout systems: status • Requirement: ~ 5x10⁻²³ m/vHz Present AURIGA technology: ~ 5x10⁻²⁰ m/vHz with. optomechanical readout - based on Fabry-Perot cavities capacitive readout - based on SQUID amplifiers Foreseen limits of the readout sensitivity: ~ 10⁻²² m/vHz. Critical issues: optomechanical – push cavity finesse to current technological limit together with Watt input laser power capacitive – push bias electric field to the current technological limit Develop non-resonant devices to amplify the differential deformation of the massive bodies.

