ATLAS Level–1 Muon Barrel RODbus Preliminary Design Review

Alberto Aloisio

Mar.12, 2002

INFN - Sezione di Napoli, Italy

e-mail: aloisio@na.infn.it

- Muon Level-1 Trigger and Data path
- ROD crate architecture
- RODbus features
- Measure, models & simulations
- Test results
- Conclusions

From PAD to ROD/SL

- Optical out from PAD to:
 - SL
 - ROD
- 12 bit @ 40MHz on the trigger path; synch, fixed and low latency link required to guarantee timing.
- 16 bit + strobe on the data path.

ROD Crate layout

4

RODbus requirements

- SL to ROD
 - 48 bit@40MHz
 - synchronous with low latency
- RX to ROD
 - $-(16+8 \text{ bits } x \ 2 = 48 \text{ bits})$

- ROD to RX/SL (not shown)
 - Low skew, low jitter clock distribution
 - control signals (RST*, LVL1A, ...)

Common platform for both SLs and RXs to ROD backbones:

- SL asks for a synchronous design.
- Low skew, low jitter signals need a differential signaling scheme.
- Doubling data lines saturates the pin availability (and board space) if a SerDes approach is not used.
- Low voltage, low power (and high performances) suggest LVDS.
- System level "non-timing" signals (as RST*) can run TTL.

Strategy

Choosing the chip-set

- DS90CR483/4 chip-set, a 48:8 bit + clock LVDS pseudo SerDes
- Deskew and Preemphasis for improved performances
- Data transfer rate @ 7x master clock frequency

Partitioning the problem

- To optimize board layout and backplane performances, we decided to assign the SLs to ROD and the RXs to ROD channels to two "add on" backplanes.
- In this review, we present the prototype of the RXs to ROD backplane, assigned to J2
- The SLs to ROD backplane will be done using the same technology, mapped to J0

RODbus: RXs to ROD

3 slot backplane to link
 2 RXs to one ROD

- 10 layer stack-up
- Diff. microstrip for
 LVDS pairs and single ended for TTL lines on separate planes
- Plug-in to the VME64 rear side. TTL lines terminated as VME

ROD slot pinout

- ROD distributes clock and 8 system control signals
- Receives 48bits@40MHz from each adjacent RX

Physical layout

Diff. LVDS pairs routed as edge coupled microstrips

- All pairs have the same length (10 mil tolerance).
- Noisy TTL lines are routed on a separate plane.

TDR interface

- Two test fixtures have
 been designed to interface
 the RODbus to TDR
- Diff. Impedance profile can be measured
- Impact of connectors, vias, stubs and holes (present in the real environment) can be evaluated

TDR profile

- TDR step probes
 backplane line and
 connectors
- PCB stack-up is tested
- line length and impedance are measured
- Iumped L/C (connectors, vias, solder pads) are visible

■ ROD emulation:

- Distributes Clock to RXs (from ext. or local source)
- Receives serial streams from RXA and RXB

Mar. 12, 2002

Testing the SerDes: RX slot

Interface to ParBERT \

- RX emulation:
 - Receives Clock from ROD
 - Transmits serial streams to ROD

15

- The entire RX-to-ROD connection is analyzed
- Unpopulated RX and ROD emulators are used to evaluate the signal integrity using TDR

Impedance profile

The TDR reflected
 step shows the
 discontinuities (vias,
 holes, connectors, ...)

The impedance
 profile is derived
 deconvolving the
 multiple reflections

Modelling the system

A PSpice model has been developed, based on the impedance profile

- The model is based on ideal (lossless) line segments
- Model validation is performed by simulating the TDR reflected step. Results are in excellent agreement with experimental data

IBIS models

Typical output stage

Typical input stage

IBIS is an ANSI standard to model I/O buffers mainly for signal integrity issues
Different from SPICE, IBIS gives only a behavioral description - disclosing no proprietary circuit information

The I/O buffer is characterized by means of a standard template of VI curves and stray L,C and R

19

Mar. 12, 2002

DS90CR483 LVDS Output

A. Aloisio

Simulation caveat

- Interconnection Model is based on ideal transmission lines
- Crosstalk, ground bounce, probe loading are not modeled
- TDR-derived models are less accurate the longer the step travels
- SerDes IBIS model only specs typ. values, pre-emphasis and deskew not modeled
- Standing wave needs long simulation runs
 (>15h to simulate 2us on a Pentium II 350)

Mar. 12, 2002

SerDes LVDS clock - TX side

Test results (preliminary)

- Tests with 2^15 PRBS show no errors in the SerDes operations up to 60 MHz (420 Mbit/s). Fine tuning should allow reaching 80 MHz (560 Mbit/s).
- Latency is 5 clock cycles (125ns @ 40 MHz), dominated by the SerDes specs.
 RODbus T_{pd} (570 ps) is negligible.

More tests to be done

- RODbus performances in a real VME (noisy) environment
- EMI
- BER vs. clock frequency and different patterns
- 48-bit 2^16 Pseudo Random Word Sequence (PRWS) test requires a custom platform (generator, analyzer, adapters, ...) to be developed

Conclusions (1/2)

- RODbus is the proposed backbone for all the ROD crate interconnection needs
- It specifies the physical layer (backplane, line impedance, levels) and the logical layers (SerDes specs)
- Data transfer rate is 7x the master clock frequency (280 Mbit/s @ 40MHz) requiring careful PCB layout for backplane and users' boards. Emulators have been designed proof of concept, tests and PCB layout reference

Conclusions (2/2)

- RODbus has been in-deep characterized by using TDR techniques. SPICE models have been derived and validated. SerDes SPICE models have been crafted starting from IBIS files.
- The entire system has been simulated with PSpice and results show good agreement with experimental data.
- Analog simulations has been successfully used to evaluate the system performances and signal integrity issues.