**ICARUS A Second-Generation Proton** Decay Experiment and Neutrino Observatory at the **Gran Sasso Laboratory CERN/SPSC 2002-027** (SPSC-P-323)

#### The ICARUS Collaboration

S. Amoruso, P. Aprili, F. Arneodo, B. Babussinov, B. Badelek, A. Badertscher, M. Baldo-Ceolin, G. Battistoni, B. Bekman, P. Benetti, A. Borio di Tigliole, M. Bischofberger, R. Brunetti, R. Bruzzese, A. Bueno, E. Calligarich, D. Cavalli, F. Cavanna, F. Carbonara, P. Cennini, S. Centro, A. Cesana, C. Chen, Y. Chen, D. Cline, P. Crivelli, A. Dabrowska, Z. Dai, M. Daszkiewicz, R. Dolfini, A. Ereditato, M. Felcini, A. Ferrari, F. Ferri, G. Fiorillo, S. Galli, Y. Ge, D. Gibin, A. Gigli Berzolari, I. Gil-Botella, A. Guglielmi, K. Graczyk, L. Grandi, K. He, J. Holeczek, X. Huang, C. Juszczak, D. Kielczewska, J. Kisiel, L. Knecht, T. Kozlowski, H. Kuna-Ciskal, M. Laffranchi, J. Lagoda, Z. Li,
B. Lisowski, F. Lu, J. Ma, G. Mangano, G. Mannocchi, M. Markiewicz, F. Mauri, C. Matthey, G. Meng, C. Montanari, S. Muraro, G. Natterer, S. Navas-Concha, M. Nicoletto, S. Otwinowski, O. Palamara D. Pascoli, L. Periale, G. Piano Mortari, A. Piazzoli, P. Picchi, F. Pietropaolo, W. Polchlopek, T. Rancati, A. Rappoldi, G.L. Raselli, J. Rico, E. Rondio, M. Rossella, A. Rubbia, C. Rubbia, P. Sala, D. Scannicchio, E. Segreto, Y. Seo, F. Sergiampietri, J. Sobczyk, N. Spinelli, J. Stepaniak, M. Stodulski, M. Szarska, M. Szeptycka, M. Terrani, R. Velotta, S. Ventura, C. Vignoli, H. Wang, X. Wang, M. Wojcik, G. Xu, X. Yang, A. Zalewska, J. Zalipska, C. Zhang, Q. Zhang, S. Zhen, W. Zipper.

| University and INFN of: L'Aquila, LNF, LNGS, Milano, Naples, Padova, Pavia, Pisa - Italy |                                                      |
|------------------------------------------------------------------------------------------|------------------------------------------------------|
| ETH Hönggerberg, Zürich - Switzerland                                                    | IHEP, Academia Sinica, Beijing - China               |
| CNR Istitute of cosmogeophysics, Torino - Italy                                          | Politecnico di Milano - Italy                        |
| University of Silesia, Katowice - Poland                                                 | University of Mining and Metallurgy, Krakow - Poland |
| H.Niewodniczanski Inst. of Nucl. Phys., Krako                                            | w - Poland Jagellonian University, Krakow - Poland   |
| Cracow University of Technology, Krakow - P                                              | Poland A.Soltan Inst. for Nucl. Studies, Warszawa -  |
| Poland Warsaw University, Warszawa - Poland                                              | Wroclaw University, Wroclaw - Poland                 |
| UCLA, Los Angeles - USA                                                                  | University of Granada - Spain                        |

#### The ICARUS programme: introduction (I)

#### • ICARUS was initially proposed to INFN in 1993

ICARUS-II. A Second Generation Proton Decay Experiment And Neutrino Observatory At The Gran Sasso Laboratory Proposal, VOL I (1993) & II (1994), LNGS-94/99.

#### • The proposal was based on

- ➡ The novel detection technique of the liquid argon TPC
- ➡ Its extrapolation to large (kton) masses
- ➡ To provide a rich physics programme
  - Proton decay
  - Atmospheric neutrinos
  - Solar neutrinos
  - Supernovae neutrinos
- ➡ In addition, the potentialities for LBL neutrino oscillations from CERN were already covered in such proposal.

#### The ICARUS programme:introduction (II)

- The ICARUS detector has been approved in 1997 by the Italian INFN and it is currently financed as an integral part of the LNGS programme.
- In view of the innovative nature of the LAr technology, a graded approach is being followed:
  - 1. A full scale 600 ton module, "the first in a series", has been constructed in Pavia, in collaboration with industry.
  - 2. The successful operation of the T600 half-module during the Summer 2001 has demonstrated that the technique has matured.
  - 3. With a physics program of its own, the installation of the T600 has been recommended by GSSC. It will be placed in Hall B of LNGS during Summer 2003, and commissioned for physics right after.
  - 4. In order to reach the design mass, the cloning of the T600 for further modules has been recommended by GSSC:
    - "(…) urges both the collaboration and the laboratory to work closely together on carrying out a complete risk analysis including all the safety relevant data of the <u>final module</u> (resembling the possible base element of T3000)"
  - 5. INFN Comm II has approved the T3000 scientific programme and the design of successive T1200 modules (design is now ongoing in collaboration with industry). The first T1200 module is funded.
  - 6. The upgrade foresees extending the T600 with two new T1200 modules by early 2006. Total active liquid argon mass: 2003: 476 ton; Q4 2004: 1430 ton; Q4 2005: 2380 ton.

#### **Recent presentations at CERN**

- "A proposal for a CERN-GS long baseline and atmospheric neutrino oscillation experiment", SPSC, September 1999
- "A Status Report on the LAr detector construction", SPSC, September 2000
- "Liquid Argon Imaging: a Novel Detection Technology", Carlo Rubbia, CERN Seminar, February 2002

The ICARUS R&D has also been extensively reported in publications (see also http://www.aquila.infn.it/icarus and http://www.cern.ch/icarus and links therein)

# Past experience

# and results:

# the scaling up in mass

#### Past experience and results - 50 liter prototype

- Active volume : 50 liters
- Readout planes: 2 (0°,90°)
- Max drift distance: 45cm
- ✓ Reconstruction of vertices of v-interactions✓ Fermi-motion
- ✓ Track direction by  $\delta$ -rays
- $\checkmark$  dE/dx versus range for K, $\pi$ ,p discrimination
- ✓ Max. electron lifetime > 10 ms
- LAr purification by Ar vapour filtering and recondensation
- LAr purity monitors
- Optimization of front-end electronics for induction and collection planes
- Warm and cold electronics
- Readout chain calibration studies
- Signal treatment
- Collection of scintillation light
- 1.4 m drift length (special test)



#### Past experience and results - 15 ton prototype

- Total volume : 10 m<sup>3</sup>
- Readout planes: 2 (–60°,60°)
- Max drift distance: 35 cm

✓ Final electronics
✓ DAQ
✓ External trigger
✓ 100 days run in LNGS external hall
✓ Max. electron lifetime ≈ 2 ms

- Purification in liquid phase
- HV feed-throughs
- Cryogenic technology
- Signal feed-throughs
- Variable geometry drift chamber wire



T15 installation @ LNGS (Hall di Montaggio)



#### **Experience and results - 300 ton detector**

- Total volume : 350 m<sup>3</sup>
- Readout planes: 3 (-60°,60°,0°)
- Max drift distance: 150 cm
- Full scale technical run of the T300 detector in Pavia:

### ICARUS T300 cryostat (1 out of 2)





CERN-SPSC - Sept 3, 2002

#### Answering the SPSC request: The 18 meter long track...

 "The Committee congratulates (...) progress (...) in the construction of the T600 module and awaits recording of long tracks in this module.", SPSC September 2000

17.5 meter muon track



#### Longitudinal muon track crossing cathode plane





# Brief overview of

# T600 perfomance

#### T600 prototype performance

 The technical run in Pavia in summer 2001 has allowed not only to ascertain the maturity of large scale liquid Argon imaging TPC, but has also allowed to collect (in addition of the 18 m long track) a large number of C.R. events

► About 28000 triggers have been accumulated

- These events provide valuable data to check the performance of a detector of such large scale. We find that: results of the <u>same quantitative quality</u> as those obtained with smaller prototypes (e.g. 3 ton, 50 liter, ...) have been achieved with a 300 ton device.
  - Scaling up is successful.

#### **Readout principle**



#### Signal extraction procedure



**CALIBRATION** ... find the equivalence between charge and ADC counts =

CERN-SPSC - Sept 3, 2002

17

**FACTOR** 

#### Linearity and calibration

#### Analog Boards: 0.0138 ± .01% fC / ADC count



For each channel and for each value of the injected charge:

- calculate the hit integral (= charge)
- plot it as a function of the input charge (fC)
- fit the distribution to a straight line (1/slope gives the calibration factor)

#### **Decoupling Boards: 0.0139 ± 0.05% fC/ADC count**



#### **3D** reconstruction

- The 3D reconstruction is based on the fact that the drift time coordinate (y-coordinate) is shared among all three views.
- The matching between the views is redundantly done at the "hit"-level



### **Stopping muon reconstruction example** $\mu^{+}[AB] \rightarrow e^{+}[BC]$



#### CERN-SPSC - Sept 3, 2002

### Run 939 Event 95 Right chamber



CERN-SPSC - Sept 3, 2002

#### Muon bundle event (Run 959, Event 17)

Left chamber (collection view)

## 22 used tracks

#### Right chamber (collection view)

## 10 used tracks

#### Landau distribution from single event (32 tracks)





1391 entries

#### Stopping muon automatic reconstruction (I)



#### Stopping muon automatic 2D reconstruction (II)



#### Stopping muon automatic 3D reconstruction (III)



#### Displaced electron from muon decay lifetime

 $\Delta t \approx 8 \ \mu s$ 







### In-flight annihilation of positron

 $\approx 20\%$  of positron from  $\mu$  decays expected to annihilate before stopping

Run 844, Event 24 (2.6 MeV) e<sup>+</sup>e<sup>-</sup> pair (20 MeV) (13 MeV)  $e^+$  $\mu^+$ Collection view Induction 2 view

Annihilation point

#### Bremsstrahlung track selection



#### Fully reconstructed stopping muon event



#### **Calorimetric reconstruction Michel electrons**



Energy (MeV)

#### **Reconstruction Bremsstrahlung photons**



#### Final electron spectrum with Bremsstrahlung photons



#### Pi zero candidate (preliminary)



# ICARUS T3000

## An undeground observatory for rare processes


# The Basic Layout of the T1200 unit



# **ICARUS detector configuration in LNGS Hall B (T3000)**





# dE/dx in 3 ton

# **Particle identification (I)**



*Energy loss profile along kaon and pion tracks and distribution of the distance from the kaon fit function along pion and kaon tracks.* 

41

### **Particle identification (II)**

# dE/dx in 50 liter



# **Proton decay: direct comparison with SuperK**

|                               |        |      |          |         |                    |                                       | Needed Exp.     |
|-------------------------------|--------|------|----------|---------|--------------------|---------------------------------------|-----------------|
| Channel                       |        | Eff. | Observed | Bkg.    | Exposure           | $\tau/{ m B}~{ m limit}$              | to reach SK     |
|                               |        | (%)  | (evts.)  | (evts.) | $(kTon \times yr)$ | $(10^{32} \text{ yr})$                | (kTon 	imes yr) |
| $p \rightarrow e^+ \pi^0$     | SuperK | 43   | 0        | 0.2     | 79                 | $50 \rightarrow 30 [1 \text{ evt}]$   |                 |
|                               | ICARUS | 45   |          | 0.005   | 5                  | 2.7                                   | 94              |
| $p \to K^+ \bar{\nu}$         | SuperK |      |          |         | 79                 | $19 \rightarrow 13 \ [1 evt]$         |                 |
| prompt $\gamma \mu^+$         | SuperK | 8.7  | 0        | 0.3     |                    | $10 \rightarrow 7$                    |                 |
| $K^+ \rightarrow \pi^+ \pi^0$ | SuperK | 6.5  | 0        | 0.8     |                    | $7.5 \rightarrow 5$                   |                 |
|                               | ICARUS | 97   | _        | 0.005   | 5                  | 5.7                                   | 17              |
| $p \rightarrow \mu^+ \pi^0$   | SuperK | 32   | 0        | 0.4     | 79                 | $37 \rightarrow 24 \ [1 \text{ evt}]$ |                 |
|                               | ICARUS | 45   | —        | 0.04    | 5                  | 2.6                                   | 102             |

SuperK results compiled by M. Goodman for NNN02, January 2002

- Water Cerenkov are notoriously good at back-to-back three-rings events hence in eπ<sup>0</sup> and μπ<sup>0</sup> channels channels SuperK gains on the mass, even though backgrounds are round the corner
- In the favoured p→vK channel, the efficiency is LAr is ≈10 times better than the channels investigated
  - ➡ ICARUS T3000 fiducial is equivalent to 23.5 kton H<sub>2</sub>O to be compared to SuperK 22.5 kton

# **SuperK e+**π<sup>0</sup> **final state candidate** 1997-09-24 12:02:48 : cut by SuperK because compatible with background



Particle momentum thresholds in Water: •Electron 0.6 MeV/c •Muon 120 MeV/c •Pion 159 MeV/c •Kaon 568 MeV/c •Proton 1070 MeV/c

#### **Proton decay**





# Proton decay (II): existing SuperK results

| Channel                |        | Eff.<br>(%) | C | Dbserved<br>(evts.) | Bkg.<br>(evts.) | $\begin{array}{c} \mathbf{Exposure} \\ \mathbf{(kTon}{\times}\mathbf{yr}) \end{array}$ | $	au/\mathbf{B} \ \mathbf{limit} \ (10^{32} \ \mathbf{yr})$ |       |
|------------------------|--------|-------------|---|---------------------|-----------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------|-------|
| $p \to e^+ \eta$       | SuperK | 17          |   | 0                   | 0.3             | 45                                                                                     | 11                                                          | ]     |
| $p \to e^+ \rho$       | SuperK | 6.8         |   | 0                   | 0.6             | 61                                                                                     | 6.1                                                         |       |
| $p \to e^+ \omega$     | SuperK | 3.3         |   | 0                   | 0.3             | 61                                                                                     | 2.9                                                         | 9     |
| $p \to e^+ K^0$        | SuperK |             |   |                     |                 | 70                                                                                     |                                                             | •     |
| $K^0 \to \pi^0 \pi^0$  |        | 11.8        |   | 1                   | 1.4             |                                                                                        | 8.8                                                         |       |
| $K^0 \to \pi^+ \pi^-$  |        | 6.2         |   | 6                   | 1               |                                                                                        | 1.5                                                         | KEY L |
| $p \to \mu^+ \eta$     | SuperK | 12          |   | 0                   | 0               | 45                                                                                     | 7.8                                                         | 1 Min |
| $p \to \mu^+ K^0$      | SuperK |             |   |                     |                 | 70                                                                                     |                                                             |       |
| $K^0 \to \pi^0 \pi^0$  |        | 6.1         |   | 0                   | 1.1             |                                                                                        | 6.2                                                         | / /40 |
| $K^0 \to \pi^+ \pi^-$  |        | 5.3         |   | 0                   | 1.5             |                                                                                        | 5.4                                                         |       |
| $n \to \bar{\nu} \eta$ | SuperK | 21          |   | 5                   | 9               | 45                                                                                     | 5.6                                                         |       |
| $n \to \bar{\nu} K^0$  | SuperK |             |   |                     |                 | 79                                                                                     |                                                             |       |
| $K^0 \to \pi^0 \pi^0$  |        | 9.6         |   | 25                  | 33.8            |                                                                                        | 3.2                                                         |       |
| $K^0 \to \pi^+ \pi^-$  |        | 4.6         |   | 10                  | 6.7             |                                                                                        | 1.1                                                         |       |

- Note that many are preliminary.
- Many in the range of a few 10<sup>32</sup> years
- Backgrounds are round the corner and not well understood !
  - ightarrow p→eK<sup>0</sup> with K<sup>0</sup> → ππ has excess of 6 vs 1 expected
  - ➡ Taking sum of all other proton channels one gets 1 seen for 5.2 expected !
  - ➡ Backgrounds for neutron decays unsatisfactory

Table presented by M. Goodman @ NNN02, January 2002

# Proton decay: ICARUS expected sensitivities

|                                 |        |      |          |         |                    |                         | Needed Exp  | osure |
|---------------------------------|--------|------|----------|---------|--------------------|-------------------------|-------------|-------|
| Channel                         |        | Eff. | Observed | Bkg.    | Exposure           | $\tau/\mathbf{B}$ limit | to reach PI | )G'02 |
|                                 |        | (%)  | (evts.)  | (evts.) | $(kTon \times yr)$ | $(10^{32} \text{ yr})$  | (kTon×y     | r)    |
| $p \to \mu^- \pi^+ K^+$         | ICARUS | 98   | _        | 0.005   | 5                  | 5.7                     | 2.1         |       |
| $p \to e^+ \pi^+ \pi^-$         | ICARUS | 19   | —        | 0.125   | 5                  | 1.1                     | 3.8         |       |
| $p \to \pi^+ \bar{\nu}$         | ICARUS | 42   | —        | 4       | 5                  | 1.2                     | 0.5         |       |
| $p \to e^+ \pi^+ (\pi^-)$       | ICARUS | 30   | —        | 6       | 5                  | 0.7                     |             |       |
| $p \to e^+ \; (\pi^+ \; \pi^-)$ | ICARUS | 16   | _        | 20      | 5                  | 0.2                     |             |       |
| $n \to e^- K^+$                 | ICARUS | 96   | _        | 0.005   | 5                  | 6.9                     | 0.24        |       |
| $n \to \mu^- \pi^+$             | ICARUS | 45   | _        | 0.12    | 5                  | 3.2                     | 1.6         |       |
| $n \to e^+ \pi^-$               | ICARUS | 44   | _        | 0.04    | 5                  | 3.2                     | 2.5         |       |
| $n \to \pi^0 \ \bar{\nu}$       | ICARUS | 45   | _        | 2.4     | 5                  | 2                       | 2.4         |       |
| $n \to \mu^- (\pi^+)$           | ICARUS | 21   | _        | 15      | 5                  | 0.4                     |             |       |
| $n \to e^+ (\pi^-)$             | ICARUS | 26   | _        | 27      | 5                  | 0.4                     |             |       |

- Extremely low backgrounds
- Inclusive analyses accessible
- Relevant results for few kton × year exposure already
- Expected range in few  $10^{32}$  years after 5 kton  $\times$  year exposures.

# Atmospheric neutrinos

- Present situation:
  - ► SuperK will resume this year with 50% coverage
  - ICARUS will look with a completely new technique to such astrophysical source
- The atmospheric neutrino analysis in ICARUS will be characterized by
  - ➡ An unbiased, systematic-free observation whereas
    - SuperK is in practice limited to single-ring CC events
    - All other analyses rely on MC to extract signals (e.g. "NC enriched sample", τappearance neural net based, ...)
  - ► An excellent energy and angular reconstruction
  - Experimental and theoretical advances in prediction of the atmospheric neutrino rates which will match the improved measurements possible with ICARUS
    - Expertise within the Collaboration
    - Expect improvements in:
      - $\star$  Low energy events
      - ★ Clean electron sample
      - ★ All final states, and with neutrino and antineutrino statistical separation
      - ★ Neutral currents

# Atmospheric rates

#### • Mass is not the only issue!

|                                | $2 \text{ kton} \times \text{year}$ |                                                     |              |                                                     |  |  |  |
|--------------------------------|-------------------------------------|-----------------------------------------------------|--------------|-----------------------------------------------------|--|--|--|
|                                |                                     | Solar minimum                                       |              | Solar maximum                                       |  |  |  |
|                                | No osc.                             | $\Delta m_{23}^2 = 2.5 \times 10^{-3} \text{ eV}^2$ | No osc.      | $\Delta m_{23}^2 = 2.5 \times 10^{-3} \text{ eV}^2$ |  |  |  |
|                                |                                     |                                                     |              |                                                     |  |  |  |
| Muon-like                      | $266 \pm 16$                        | $182 \pm 13$                                        | $249 \pm 16$ | $171 \pm 13$                                        |  |  |  |
| $\mu + p$                      | $59\pm8$                            | $39\pm 6$                                           | $71\pm8$     | $35\pm 6$                                           |  |  |  |
|                                |                                     |                                                     |              |                                                     |  |  |  |
| $P_{lepton} < 400 \text{ MeV}$ | $114\pm11$                          | $69\pm8$                                            | $98 \pm 10$  | $63 \pm 8$                                          |  |  |  |
| $\mu + p$                      | $32 \pm 2$                          | $20\pm4$                                            | $28 \pm 5$   | $18 \pm 4$                                          |  |  |  |
|                                |                                     |                                                     |              |                                                     |  |  |  |
| Electron-like                  | $150 \pm 12$                        | $150 \pm 12$                                        | $138 \pm 12$ | $138 \pm 12$                                        |  |  |  |
| e+p                            | $35\pm6$                            | $35\pm 6$                                           | $40\pm6$     | $40\pm 6$                                           |  |  |  |
|                                |                                     |                                                     |              |                                                     |  |  |  |
| $P_{lepton} < 400 \text{ MeV}$ | $74\pm9$                            | $74\pm9$                                            | $66 \pm 8$   | $66 \pm 8$                                          |  |  |  |
| e + p                          | $20\pm4$                            | $20 \pm 4$                                          | $18\pm4$     | $18\pm4$                                            |  |  |  |
|                                |                                     |                                                     |              |                                                     |  |  |  |
| NC-like                        | $192\pm14$                          | $192 \pm 14$                                        | $175\pm13$   | $175 \pm 13$                                        |  |  |  |
|                                |                                     |                                                     |              |                                                     |  |  |  |
| TOTAL                          | $608\pm25$                          | $524 \pm 23$                                        | $562 \pm 24$ | $484 \pm 22$                                        |  |  |  |

# Atmospheric $v_{\mu}$ interaction, $E_{\nu}=1.73$ GeV

 $\mu^{-}$ 



# Atmospheric $v_e$ interaction, $E_v=0.730$ GeV

65 cm



## **Reconstruction of atmospheric neutrinos**

#### Containment

- ⇒ ≈60% of  $v_{\mu}$  CC events are fully contained
- Contained tracks will be measured by range and calorimetrically (integration of dE/dx)

  - $≈ 3\% %/\sqrt{E(GeV)}$ for electromagnetic showers
- Range vs dE/dx provides particle identification
- Measurement of escaping tracks (mostly muons) can be performed in different ways
  - By multiple scattering
    - Exploit the momentum dependence of the scattering
    - $rightarrow \sigma_p/p ≈ 0.10 + 0.048ln(p[GeV])$  for 5 meters long tracks
  - ➡ By precise measurement of the energy loss rate
    - Exploit the relativistic rise of dE/dx precisely determined by combining successive samples
    - $\sigma_p/p \approx 20-30 \%$

# Muon momentum reconstruction by multiple scattering



# **Reconstructed L/E distribution**



## Astrophysical low energy neutrinos: solar and supernovae



# Low energy reactions in Argon

• Elastic scattering from neutrinos (ES)

 $\phi(v_e) + 0.15 \phi(v_\mu + v_\tau)$ 

$$V_x + e^- \rightarrow V_x + e^-$$

• Electron-neutrino absorption (CC)

φ(ν<sub>e</sub>) Q=5.885 MeV

$$V_e + {}^{40}Ar \rightarrow {}^{40}K^* + e^-$$

Elastic scattering from antineutrinos (ES)

 $\phi(\overline{\nu_e})$ +0.34  $\phi(\overline{\nu_{\mu}} + \overline{\nu_{\tau}})$ 

$$\overline{\nu}_x + e^- \rightarrow \overline{\nu}_x + e^-$$

• Electron-antineutrino absorption (CC)  $\phi(\overline{v}_e)$   $Q \approx 8 \text{ MeV}$ • Electron-antineutrino absorption (CC)  $\overline{v}_e + {}^{40}Ar \rightarrow {}^{40}Cl^* + e^+$ 

# ICARUS and the CNGS beam (I)

- ICARUS as a LBL neutrino oscillations experiment between CERN and LNGS was already discussed in the 1993 proposal
  - The simultaneous study of accelerator and non-accelerator sources is possible due to the nature of the detection technique
    - Continuously sensitive and isotropic
    - The CNGS events will be separated from other events by timing requirement on the CERN SPS spill
- The ICARUS physics program will be enriched by CNGS oscillation searches.
- The ICARUS collaboration has already contributed to the design and optimization of the CNGS beam.

# ICARUS and the CNGS beam (II)

- The real-time detection, the excellent granularity and energy resolution of the liquid argon TPC allows to collect and identify interactions from CNGS neutrinos
  - $ightarrow v_{\mu}$  CC: study online the beam profile, steering and normalization;
  - →  $v_e$  CC: search for  $v_\mu \rightarrow v_e$  oscillations with the best sensitivity until the JHF-SK program turns on;
  - ightarrow v<sub>τ</sub> CC: search for v<sub>μ</sub>→v<sub>τ</sub> oscillations with a sensitivity at least similar to that of the OPERA experiment;
  - → NC events: search for  $v_{\mu} \rightarrow v_s$  oscillations or exotic models.

# **ICARUS-CNGS** experiment

# Detector configuration

➡ T3000

- ➡ Active LAr: 2.35 ktons
- 5 years of CNGS running
   ⇒ Shared mode
   ⇒ 4.5 x 10<sup>19</sup> p.o.t./year
- 280  $v_{\tau}$  CC expected for  $\Delta m_{23}^2=3 \times 10^{-3} \text{ eV}^2$  and maximal mixing

| Process                                        | Expected Rates |
|------------------------------------------------|----------------|
| $\nu_{\mu}$ CC                                 | 32600          |
| $\overline{\nu_{\mu}}$ CC                      | 652            |
| v <sub>e</sub> CC                              | 262            |
| $\overline{\nu_{e}}$ CC                        | 17             |
| νΝΟ                                            | 10600          |
| νNC                                            | 243            |
| $ν_{\tau}$ CC, $\Delta m^2$ (eV <sup>2</sup> ) |                |
| 1 x 10 <sup>-3</sup>                           | 31             |
| 2 x 10 <sup>-3</sup>                           | 125            |
| 3 x 10 <sup>-3</sup>                           | 280            |
| 5 x 10 <sup>-3</sup>                           | 750            |

## **CNGS Beam Profile Measurement**



CERN-SPSC - Sept 3, 2002

# A. External muon spectrometer

- Already in 1999, the Collaboration had put forward the possibility to complement the liquid Argon imaging by an external device capable of magnetic analysis of escaping muons.
- Physics motivation:
  - Measure the muon charge via magnetic analysis
  - Online beam energy spectrum monitoring
  - Kinematical properties of closed  $v_{\mu}$  CC events
    - Direct measurement of background for  $\tau$  searches
  - Improve momentum resolution of muons by combining multiple scattering and magnetic bending analysis
- Magnet design:
  - Strategy: simple design, compatible with the large transverse dimensions of the T1200 module
- Detection technique:
  - Drift tubes + fast trigger devices

# B. Front muon "veto"

#### •Muon detection walls:

Beam monitoring & tagging of rock interactions

# Artist view spectrometer



# **Basic Magnet Parameters**

| External dimensions                             |                  |     |                                    |                          |
|-------------------------------------------------|------------------|-----|------------------------------------|--------------------------|
| Width                                           | $850~{\rm cm}$   |     |                                    |                          |
| Height                                          | $950~{ m cm}$    |     |                                    |                          |
| Magnetic bending regions                        |                  |     | Magnetic field                     |                          |
| Number of regions                               | 2                |     | Field strength                     | 1.8 T                    |
| Length of each bending region                   | $150~{ m cm}$    |     | Corresponding Fe magnetization     | $100 A \cdot turns/cm$   |
| Fe Plates                                       |                  |     | Total Fe magnetization             | $220000 \ A \cdot turns$ |
| Total number of plates                          | 96               |     | Air gap                            |                          |
| Approximate dimensions                          |                  |     | Magnetization                      | $14000 \; A \cdot turns$ |
| Width                                           | $850~{ m cm}$    |     | 20% safety margin                  | $47000 \ A \cdot turns$  |
| $\operatorname{Length}$                         | 150              |     | Total                              |                          |
| Thickness                                       | $20~\mathrm{cm}$ |     | Magnetization                      | $281000 \ A \cdot turns$ |
| Approximate weight of single plate              | 20  tons         |     | Total number of conductor loops    | 48                       |
| Preparation                                     |                  |     | Current in conductor               | 5850 A                   |
| Number of plates Type EP:200                    | 70               |     | Resistance                         |                          |
| Number of plates Type EP:200 with extra cutting | 24               |     | Al resistivity at $20^{\circ}$ C   | $0.03 \ \Omega mm^2/m$   |
| Number of plates Type EP:100                    | 2                |     | Al resistivity at $50^{\circ}$ C   | $0.035 \ \Omega mm^2/m$  |
| Magnetization                                   |                  | ╡║║ | Total resistance of coil           | $8 \times 10^{-3}\Omega$ |
| Number of coils                                 | 2                |     | Total electrical power (at 6000 A) | 275 kW                   |
| Fe blocks within coil                           |                  |     | Voltage drop                       | 46 V                     |
| Number of blocks                                | 12               |     |                                    |                          |
| Width                                           | $150~{ m cm}$    |     |                                    |                          |
| $\operatorname{Length}$                         | $150~{\rm cm}$   |     |                                    |                          |
| Total Height                                    | $950~{ m cm}$    |     |                                    |                          |
| Total Fe weight                                 | 2223  tons       |     |                                    |                          |





CERN-SPSC - Sept 3, 2002

## **Event kinematics reconstruction**



<Missing  $P_T > \approx 410 \text{ MeV}$ 

#### Direct detection of flavor oscillation

Expected  $v_e$  and  $v_{\tau}$  contamination (in absence of oscillations) is of the order of 10<sup>-2</sup> and 10<sup>-7</sup> relative to the main  $v_{\mu}$  component

$$\mathbf{v}_{\mu} \rightarrow \mathbf{v}_{\tau} \qquad \mathbf{v}_{\tau} + \mathbf{Ar} \rightarrow \tau + \mathbf{jet}; \ \tau \rightarrow \begin{cases} evv & 18\% \\ \mu vv & 18\% \\ h^{-}nh^{0}v & 50\% \\ h^{-}h^{+}h^{-}nh^{0}v & 14\% \end{cases}$$



$$v_e + Ar \rightarrow e + jet$$

Charged current (CC)

## $\tau \rightarrow e \ search: \ 3D \ likelihood$

<u>A simple analysis approach</u>: a likelihood method based on 3 variables



More sophisticated approaches (e.g. neural net,...) under study.

#### $\tau \rightarrow e$ search: 3D likelihood summary

| 5 year "snareu" UNGS runnin | ng j |
|-----------------------------|------|
|-----------------------------|------|

#### **T3000 configuration**

|                       | Cuts                         | $\nu_{\tau}$ Eff. | $ u_e$ | $\nu_{\tau} \ \mathrm{CC}$      |
|-----------------------|------------------------------|-------------------|--------|---------------------------------|
|                       |                              | (%)               | CC     | $\Delta m^2 =$                  |
|                       |                              |                   |        | $3 \times 10^{-3} \text{ eV}^2$ |
|                       | Initial                      | 100               | 262    | 49                              |
|                       | Fiducial volume              | 63                | 169    | 31                              |
|                       | One candidate with           |                   |        |                                 |
|                       | momentum $> 0.5 \text{ GeV}$ | 57                | 165    | 28                              |
|                       | $\ln \lambda > 0$            | 45                | 5.4    | 22                              |
|                       | $\ln \lambda > 0.5$          | 39                | 2.8    | 19                              |
|                       | $\ln \lambda > 1.0$          | 33                | 1.6    | 16                              |
|                       | $\ln \lambda > 1.5$          | 31                | 1.2    | 15                              |
| Maximum sensitivity — | $\ln\lambda>2.0$             | <b>26</b>         | 0.7    | 13                              |
|                       | $\ln \lambda > 2.5$          | 18                | 0.6    | 9                               |
|                       | $\ln \lambda > 3.0$          | 14                | 0.4    | 7                               |
|                       | $\ln \lambda > 3.5$          | 10                | 0.3    | 5                               |
|                       | $\ln \lambda > 4.0$          | 8                 | 0.2    | 4                               |

# $v_{\mu} \rightarrow v_{\tau}$ appearance search summary

- T3000 detector (2.35 kton active, **1.5 kton fiducial**)
- Integrated pots =  $2.25 \times 10^{20}$

Super-Kamiokande:  $1.6 < \Delta m^2 < 4.0$  at 90% C.L.

|                             | Signal                            | Signal                            | Signal                            | Signal                            |       |
|-----------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-------|
| $\tau$ decay mode           | $\Delta m^2 =$                    | $\Delta m^2 =$                    | $\Delta m^2 =$                    | $\Delta m^2 =$                    | BG    |
|                             | $1.6 \times 10^{-3} \text{ eV}^2$ | $2.5 \times 10^{-3} \text{ eV}^2$ | $3.0 \times 10^{-3} \text{ eV}^2$ | $4.0 \times 10^{-3} \text{ eV}^2$ |       |
| $\tau \to e$                | 3.7                               | 9                                 | 13                                | 23                                | 0.7   |
| $\tau \to \rho \text{ DIS}$ | 0.6                               | 1.5                               | 2.2                               | 3.9                               | < 0.1 |
| $\tau \to \rho \ QE$        | 0.6                               | 1.4                               | 2.0                               | 3.6                               | < 0.1 |
| Total                       | 4.9                               | 11.9                              | 17.2                              | 30.5                              | 0.7   |

• Several decay channels are exploited (golden channel = electron)

- (Low) backgrounds measured in situ (control samples)
- High sensitivity to signal, and oscillation parameters determination

# **Oscillation parameters determination**



5 years exposure combining beam and atmospheric neutrino events (within the same detector!)



# Search for subleading $v_{\mu} \rightarrow v_{e}$ (I)

- The emerging scenario:
  - → | △m<sup>2</sup><sub>21</sub> | =(4÷12)×10<sup>-5</sup> eV<sup>2</sup>
  - $\Rightarrow$  tan<sup>2</sup> $\theta_{12}$  = 0.32÷0.51  $\Rightarrow$  30°< $\theta_{12}$ <36°
  - → |∆m<sup>2</sup><sub>32</sub>|=(1.6÷3.9)×10<sup>-3</sup> eV<sup>2</sup>
  - ⇒  $sin^2 2\theta_{23}$  > 0.92⇒ 37°< $\theta_{23}$ <45°



- The confirmation that  $\nu_{\mu} \rightarrow \nu_{\tau}$  oscillations will be an important milestone
- The measurement of a non-vanishing  $\theta_{13}$  would
  - Be an important discovery, proving that the mixing matrix is 3x3 and opening the door to search for CP-violation searches in the leptonic sector !

(note that CP-violation effects will only be visible for relatively large  $\theta_{13}$ )

# Search for subleading $v_{\mu} \rightarrow v_{e}$ (II)

- Search for excess of electrons, on top of electronic decays of tau
- Takes advantage of unique  $e/\pi^0$  separation in ICARUS
- Assume 5 years @ 4.5x10<sup>19</sup> pots, 2.35 kton fiducial
- Limited by <u>statistics, needs more intensity at low energy to fully exploit</u> <u>capabilities of ICARUS</u>

| $\theta_{13}$ | $\sin^2 2\theta_{13}$ | $\nu_e \ \mathrm{CC}$      |                             | $ u_{\mu}$ ·               | $\rightarrow \nu_e$         |
|---------------|-----------------------|----------------------------|-----------------------------|----------------------------|-----------------------------|
| (degrees)     |                       | $E_{\nu} < 4 \mathrm{GeV}$ | $E_{\nu} < 50 \mathrm{GeV}$ | $E_{\nu} < 4 \mathrm{GeV}$ | $E_{\nu} < 50 \mathrm{GeV}$ |
| 9             | 0.095                 | 1.5                        | 150                         | 4                          | 42                          |
| 8             | 0.076                 | 1.5                        | 150                         | 3.1                        | 34                          |
| 7             | 0.059                 | 1.5                        | 150                         | 2.4                        | 26                          |
| 5             | 0.030                 | 1.5                        | 150                         | 1.2                        | 14                          |
| 3             | 0.011                 | 1.5                        | 150                         | 0.4                        | 5                           |
| 2             | 0.005                 | 1.5                        | 150                         | 0.2                        | 2.2                         |
| 1             | 0.001                 | 1.5                        | 150                         | 0.1                        | 0.5                         |

#### $\Delta m_{32}^2 = 3x10^{-3} \text{ eV}^2; \sin^2 2\theta_{23} = 1$


CERN-SPSC - Sept 3, 2002

## **Conclusion**

- The ICARUS agenda foresees:
  - Initial operation with the T600 at LNGS, with data taking of astrophysical events in 2003;
  - ➡ the progressive realisation of two additional T1200 modules —starting from the T600 as basic cloning unit to be operational around 2006.
- In this mass configuration, because of the unique potentials offered by the LAr technology, ICARUS will be able to perform a vast physics program in the domain of
  - ✓ Proton decay
  - ✓ Atmospheric neutrinos
  - ✓ Solar and supernovae neutrinos
- Within this context, it would be very valuable to take advantage of the realization of the CNGS beam in order to:
  - Provide real-time study of the beam properties
  - Search for  $\nu_{\mu}{\rightarrow}\nu_{e}$  and  $\nu_{\mu}{\rightarrow}\nu_{\tau}$  flavor appearance
- Because of the continuous nature of the detector, both original ICARUS programmes and its extension to CNGS could be performed simultaneously (and at a small added cost).