Angular dependence of Recombination?

Reminder/Status

In Liqid Argon Ionization chambers the collected charge Q is different from the produced charge Q_0 due to Electron Recombination :

$$Q = \mathcal{R}Q_0$$
; $\mathcal{R} \leq 1$

 \mathcal{R} is function of the electric field \mathcal{E} and of the particle stopping power $\frac{dE}{dx}$. The Birks law (from columnar theory) usually reproduces data

$$Q(\mathcal{E}) = \frac{Q_0}{1 + k/\mathcal{E}} \qquad or \qquad Q(\frac{dE}{dx}) = A \frac{Q_0}{1 + k_Q \frac{dE}{dx}}$$

$$\swarrow \qquad \qquad \swarrow$$

$$k_Q = \frac{k}{\mathcal{E}}$$

Other possibility: box model

$$Q(\mathcal{E}) = \frac{\log 1 + \xi}{\xi} \quad ; \quad \xi \propto \frac{1}{E} \tag{1}$$

ICARUS DataSets

ICARUS $1/\mathcal{R}$ vs. $\frac{dE}{dx}$

3 ton data : μ, p

300 t data : μ (J. Rico)

k values compatible

Different normalization

For simulations:

k from 3ton

A from 300 ton

ICARUS DataSets

ICARUS $1/\mathcal{R}$ vs. $\frac{dE}{dx}$

3 ton data : μ, p

300 t data : μ (J. Rico)

Constant Renormalisation

ICARUS DataSets

ICARUS $1/\mathcal{R}$ vs. \mathcal{E} muons
50 I (Silvia, Francesco)
10 m³, (Ornella)
3 t from fitted k

Status

For 600t simulations

We have now experimental slope and normalization.

MC can reproduce 600t data

For recombination paper

Normalization to be understood

No hint from calibration tests

Test with μ in 50l in program (soon)

Analisys of angular dependence- this meeting

Angular dependence?

A dependence of recombination on the angle α between \mathcal{E} and the track direction is foreseen in the columnar theory (Jaffè, Kramer):

$$\mathcal{E} \to \mathcal{E} \cdot \sin \alpha$$
 " for not too small α "

What matters is the time spent inside the column

Angular dependence in FLUKA

```
Given a track at an angle \alpha with the drift field For each substep in each subtrack find \beta angle between subtrack and \mathcal E redefine the Birks k as k/\sin\beta Small angle limit::?
```

First guess: limit from longitudinal path S needed to have diffusion radius > radius of ionization column If D = 5 cm 2 /s, (3ton paper), v=1.5 mm/ μ s, $r^2 = 4DS/v_{drift}$

m r/S = 0.1 for m r=100nm , m r/S = 0.01 for m r=10nm Ask also S < track length

Angular dependence?

FLUKA recombination mip muon vs α : muon track- $\mathcal E$ angle normalized to no angular dependence Birks k from ICARUS data \rightarrow 10 % at 30° \rightarrow Uncertain at low α