Development of a purity monitor based on an α -source

A. Badertscher, L. Knecht, M. Laffranchi, G. Natterer, A. Rubbia

Principles of the purity monitor operation

 α -Source

E-field

Mechanical design

Measuring setup

Results

Conclusions

Schematic of the purity monitor

Important features:

- Spherical electrodes with a diameter of about 0.5 mm (dipole field).
- •High field at the cathode surface suppresses the recombination.
- Range of 5.3 MeV α -particles in LAr: \cong 50 μ m.
- Fast drift velocity near surface induces short ($\cong 1 \ \mu s$) current pulse.
- Small drift velocity in the central region allows to measure long drift times.
- Drift time variation due to different drift paths along the dipole field lines.

E-field on the axis

E-field at the cathode surface: $\frac{V_0}{R_{Cathode}}$ R_{Cathode} = 0.229 mm

$$V_0 = 1 - 3.5 \text{ kV}$$

E(R) = 44 - 153 kV/cm

Purity monitor mechanics

Decay scheme of the ²¹⁰Pb α-Source

Measuring setup

Purification:

CuO₂ BTS (Fluka No. 18820)

Regenerated with H_2

No recirculation!

210 mm

Measuring setup II

Purification cartridge in a LN_2 bath

Vacuum chamber for purity monitor

Scheme of Electronics and DAQ

Pulse shapes from an α -particle

Cathode:

Large current induced (fast rise) when α is emitted.

Anode:

- •Fast rise (large induced current), when α is emitted from cathode.
- •Small induced current when electrons drift through central region.
- Large current induced when electrons arrive at anode.

Measured pulse height spectra

Resolution: ± 1 kel. at 62.5 kel.

We used the end points of the cathode spectra. Electrode distance was

Recombination

Curve: Box model fit with two parameters

Box Model Fit

Thomas and Imel, PR A36 (1987) 614

$$\frac{Q(E)}{Q_0} = \frac{E}{C} \ln(1 + \frac{C}{E})$$

Fit: $Q_0 = 24$ fC, C = 220 kV/cm (\Rightarrow Energy for an electron-ion pair: 37 eV.)

Measured electron life time

Exponential fit:

 $\frac{\underline{Q}_A}{\underline{Q}_C} = e^{-\frac{t_{drift}}{\tau}}$

(Statistical errors for τ only)

Conclusions

- We have developed a purity monitor based on an α -source and a dipole drift field to avoid the strong quenching of the ionization charge from the α -particles.
- \bullet Filling the LAr through a purification cartridge, electron lifetimes of about 100 μs were measured (no recirculation).
- •We have measured (for the first time) the recombination of the ionization charge from α -particles in LAr at very high electric fields of 40 150 kV/cm.
- More details can be found in ICARUS-TM/2002-16