

SVILUPPO E APPLICAZIONI DEL MOLTIPLICATORE GASSOSO DI ELETTRONI (GEM)

Fabio SAULI Gas Detectors Development

CERN - Geneva - Switzerland

Seminario Università di Napoli 17 maggio 2005

SOLVING THE PROBLEMS

SEARCH FOR ALTERNATIVE MICRO-PATTERN STRUCTURES

Compteur a trous Single hole in PC board: Multistep Chamber Multiwire structure:

F. Bartol, M. Bordessoule, G. Chaplier, M. Lemonnier, S. Megtert, J. Phys. III (1996) 337

Gas Electron Multiplier (GEM) Metal-coated thin foil with holes:

- Sturdier mechanical structure
- Separate amplifying (HV) and read-out

electrodes

G. Charpak and F. Sauli, Phys. Letters 78 B (1978) 523

F. Sauli, Nucl. Instr. and Methods A386(1997)531

Typical GEM geometry: 5 µm Cu on 50 µm Kapton, 70 µm holes at 140 mm pitch

Chemical etching

Manufacturing technology developed by R. De Oliveira (CERN-EST)

GEM SGAPES

STANDARD GEM

"Standard" small GEM: 10x10 cm²

4-segments GEM 10x10 cm² :

COMPASS GEM 31x31 cm²

GEM SHAPES

Nuclear Magnetic Spectrometer (Osaka Univ.)

TOTEM tracker (CERN-CMS)

Single GEM detector

GEMs CAN BE CASCADED FOR HIGHER/SAFER GAIN:

Double GEM

C. Buttner et al, Nucl. Instr. and Meth. A 409(1998)79

S. Bachmann et al, Nucl. Instr. and Meth. A 443(1999)464

MULTIGEM GAIN/DISCHARGE

Discharge probability exposed to 5 MeV α :

TRIPLE GEM TRACKER FOR COMPASS AT CERN (NA58)

Common Muon and Proton Apparatus for Structure and Spectroscopy

High rate forward spectrometer: ~ 5.10^7 polarized 160 GeV μ^+ /s on polarized ⁶LiD target

22 Triple-GEM detectors, mounted in pairs on 11 stations Data taking since 2001

http://wwwcompass.cern.ch/

COMPASS T-GEM

Light all-glued construction: $0.7\% X_0$ in active area

COMPASS T-GEM

GEM foils for COMPASS (31x31 cm²), 12-sectors + beam killer

~ 100 foils produced 22 Triple-GEM detectors running

2-D READOUT: perpendicular strips at 400 µm pitch

Charge recorded on 3hree adjacent bins (10 bit ADC)

GEM FRAME AND SPACER:

First GEM stretched and glued on frame:

HV TESTING DURING CONSTRUCTION

HIGH-RATE RUNNING PERFORMANCE

Reconstructed tracks density:

Efficiency uniformity:

COMPASS T-GEM

Charge correlation between the two projections:

SUMMARY OF RUNNING PERFORMANCES:

Max rate 10 kHz mm⁻² Space accuracy $\sigma_x \sim \sigma_y \sim 70 \ \mu m$ Efficiency: 97.2% (single) 95.6% (2D) X-Y Charge correlation: 10% rms Time resolution: σ_t =12 ns (from 3-sample fit)

Efficiency vs track multiplicity:

LHCB MUON TRIGGER

FAST TGEM DETECTORS FOR LHCb MUON TRIGGER

12 double TGEM detectors operated with fast gas mixture $(Ar-CO_2-CF_4)$

Rate - 5 kHz mm⁻² Time resolution 4.5 ns rms No aging up to integrated charge of 20 mC mm⁻² (15 LHCb years)

M. Alfonsi et al, Nucl. Instr. And Meth. A535(2004)319W. Bonivento, IEEE Nucl. Sci. Symposium (Rome 2004)

TOTEM

TOTEM: Total Cros Section, Elastic Scattering and Diffraction Dissociation at LHC

TGEM Tracker in the open plug of the CMS forward shielding

2x10 Semicircular TGEM detectors on each arm:

http://totem.web.cern.ch/Totem/

Analogue strips readout

TOTEM

FIRST TOTEM TGEM PROTOTYPE Beam tested (end 2004)

Pulse Height Spectra TOTEM GEM prototype

GEM READOUT

READOUT PATTERNS:

HEXABOARD READOUT: 3D

Hexagonal pads interconnected along three projections at 120°:

S. Bachmann et al, Nucl. Instr. and Meth. A 478 (2002) 104

HEXABOARD TPC

Fabio SAULI

MICE: Muon Ionization Cooling Experiment HEXABOARD GEM TPC Prototype

V. Ableev et al, Nucl. Instr. and Meth. A518(2004)113 Pietro Chimenti, IEEE Nuclear Science Symposium (Roma 2004)

SLIDE 25

GEM TPC

GEM READOUT FOR THE TIME PROJECTION CHAMBER

- Narrow pad response function: $\Delta s \sim 1 \text{ mm}$
- Fast signals (no ion tail): *Δ*T~20 ns
- Very good multi-track resolution: ∠IV ~ 1 mm³ (Standard MWPC TPC ~ 1 cm³)
- Ion feedback suppression: $l^+/l^- \sim 0.1\%$
- No ExB distortions
- Freedom in end-cap shapes
- Robustness

GEM-TPC PROTOTYPE LBL-KARLSRUHE-CERN

Test beam results: Efficiency 99.3 % Position accuracy $\sigma_x \sim \sigma_z \sim 100 \ \mu m$

S. Kappler et al, IEEE Trans. Nucl. Sci. NS51(2004)1039 J. Kaminski et al, Nucl. Instr. and Meth. A535(2004)201 QuickTime™ and a GIF decompressor are needed to see this picture. QuickTime™ and a GIF decompressor are needed to see this picture.

PAD ROWS: 1.27 x 12.5 mm

GEM TPC

Fabio SAULI

GEM TPC STUDIES

Charge transport in high magnetic fields:

Electron signal:

M. Killenberg et al, Nucl. Instr. and Meth. A530(2004)251

lon feedback:

GEM TPC

GEM-TPC studies in high magnetic field at DESY:

P. Wienemann, Int. Linear Collider Workshop, SLAC March 18-22, 2005

LEGS GEM-TPC

GEM-TPC FOR LEGS (LASER ELECTRON GAMMA SOURCE) AT BNL

Bo Yu, personal communication

SLIDE 31

TACTIC

TACTIC

TRIUMF Annular Chamber for the Tracking and Identification of Charged particles

Measurement of nuclear cross sections for astrophyisics

⁸Li(**α**,n) ¹¹B

⁸Li ions (90-220 keV/u) interacting in He gas

Cylindrical GEM detector with pad readout:

http://tactic.triumf.ca/about.html

PHOTON DETECTION WITH GEM

Semi-transparent photocathode:

R. Bouclier et al, IEEE Trans. Nucl. Science NS-44(1997)646

D. Mormann et al, Nucl. Instr. and Meth. A478(2002)230

CsI QUANTUM EFFICIENCY (relative to vacuum):

A. Breskin et al, Nucl. Instrum. and Methods A483(2001)670

Efficiency vs GEM geometry:

D. Mörmann et al, Nucl. Instr. and Meth. A530 (2004)258

Csl GEM

SINGLE PHOTOELECTRON POSITION ACCURACY (1-D READOUT STRIPS): Two positions of collimated beam 200 µm apart:

Linearity of response (real vs measured position)

GEM-CsI DETECTOR WITH HEXABOARD READOUT

HADRON BLIND

PHENIX UPGRADE AT BNL Hadron-blind GEM-TPC-RICH

•

Windowless Cherenkov detector (inverted field TPC) CF₄ gas radiator Triple-GEM chamber CsI photocathode on first GEM

C. Aidala et al, Nucl. Instr. and Methods A502(2003)200

A. Kozlov et al, Nucl. Instr. and Meth. A523(2004)344

HADRON BLIND

Prototype measurements Response for hadrons:

Response for electrons:

Rejection factor:

I. Tserruya, RICH04 (Playa del Carmen, Nov. 30-Dec. 5, 2004)

TWO-PHASE GEM

TWO-PHASE DETECTOR: Electrons produced in Liquid Xe are extracted and multiplied in the gas phase

TWO-PHASE KRIPTON DETECTOR

A. Bondar et al, Subm. Nucl. Instr. And Meth. (31.3.2005)

LOW TEMPERATURE

- GEM operation in low temperature He and Ne NEVIS, BNL, BINP Novosibirsk
- --> e-bubble chamber for solar neutrino detection (Bill Willis)

A. Buzulutskov et al, Subm. Nucl. Instr. And Meth (April 2005)

X-RAY POLARIMETER

Micro-GEM detector with pad readout: tracking the direction of the photoelectrons

E. Costa et al, Nature 411(2001)662 R. Bellazzini et al, Nucl. Instr. Methods A435(2004)477

CMOS ASIC readout with 2101 hexagonal pixels at 80 µm pitch

Reconstruction of a 5 keV photoelectron:

CASCADE

CASCADE (Heidelberg University)

----- Kapton ------ Copper ------ Boron 🔧 🚓 ionization track

¹⁰B - COATED GEMS FOR THERMAL NEUTRON DETECTION

¹⁰B(n,α) -> ⁷Li

²⁵²Cf neutron radiography:

http://www.physi.uni-heidelberg.de/physi/cascade

DETECTION OF SCINTILLATION LIGHT FROM GEM

Low rate continuous imaging

F.A.F. Fraga et al, Nucl. Instr. and Meth. A478(2002)357 L.M.S.Margato et al, Nucl. Instr. and Meth. A535(2004)231 QuickTime[™] and a Video decompressor are needed to see this picture.

a PARTICLES

